2,296 research outputs found

    Mid-IR heterogeneous silicon photonics

    Get PDF
    In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticle films and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources and optical parametric oscillators that can be used as spectroscopic sensor sources

    Ultra-compact modulators based on novel CMOS-compatible plasmonic materials

    Get PDF
    We propose several planar layouts of ultra-compact plasmonic waveguide modulators that utilize alternative CMOS-compatible materials. The modulation is efficiently achieved by tuning the carrier concentration in a transparent conducting oxide layer, thereby tuning the waveguide either in plasmonic resonance or off-resonance. Resonance significantly increases the absorption coefficient of the plasmonic waveguide, which enables larger modulation depth. We show that an extinction ratio of 86 dB/um can be achieved, allowing for a 3-dB modulation depth in less than one micron at the telecommunication wavelength. Our multilayer structures can potentially be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits

    On-chip optical diode based on silicon photonic crystal heterojunctions

    Full text link
    Optical isolation is a long pursued object with fundamental difficulty in integrated photonics. As a step towards this goal, we demonstrate the design, fabrication, and characterization of on-chip wavelength-scale optical diodes that are made from the heterojunction between two different silicon two-dimensional square-lattice photonic crystal slabs with directional bandgap mismatch and different mode transitions. The measured transmission spectra show considerable unidirectional transmission behavior, in good agreement with numerical simulations. The experimental realization of on-chip optical diodes using all-dielectric, passive, and linear silicon photonic crystal structures may help to construct on-chip optical logical devices without nonlinearity or magnetism, and would open up a road towards photonic computers.Comment: 14 pages, 5 figure
    corecore