16,577 research outputs found

    High-Base Optical Signal Proccessing

    Get PDF
    Optical signal processing is a promising technique to enable fast data information processing in the optical domain. Traditional optical signal processing functions pay more attention to binary modulation formats (i.e., binary numbers) with single-bit information contained in one symbol. The ever-growing data traffic has propelled great success in high-speed optical signal transmission by using advanced multilevel modulation formats (i.e., high-base numbers), which encode multiple-bit information in one symbol with resultant enhanced transmission capacity and efficient spectrum usage. A valuable challenge would be to perform various optical signal processing functions for multilevel modulation formats, i.e., high-base optical signal processing. In this chapter, we review recent research works on high-base optical signal processing for multilevel modulation formats by exploiting degenerate and nondegenerate four-wave mixing in highly nonlinear fibers or silicon photonic devices. Grooming high-base optical signal processing functions including high-base wavelength conversion, high-base data exchange, high-base optical computing, and high-base optical coding/decoding are demonstrated. High-base optical signal processing may facilitate advanced data management and superior network performance

    Modulation Format Recognition Using Artificial Neural Networks for the Next Generation Optical Networks

    Get PDF
    Transmission systems that use advanced complex modulation schemes have been driving the growth of optical communication networks for nearly a decade. In fact, the adoption of advanced modulation schemes and digital coherent systems has led researchers and industry communities to develop new strategies for network diagnosis and management. A prior knowledge of modulation formats and symbol rates of all received optical signals is needed. Our approach of modulation formats identification is based on artificial neural networks (ANNs) in conjunction with different features extraction approaches. Unlike the existing techniques, our ANN-based pattern recognition algorithm facilitates the modulation format classification with higher accuracies

    All-optical modulation converter for on-off keying to duobinary and alternate-mark inversion at 42.6 Gbps

    Get PDF
    Advanced modulation formats have become increasingly important as telecoms engineers strive for improved tolerance to both linear and nonlinear fibre-based transmission impairments. Two important modulation schemes are Duobinary (DB) and Alternate-mark inversion (AMI) [1] where transmission enhancement results from auxiliary phase modulation. As advanced modulation formats displace Return-to-zero On-Off Keying (RZ-OOK), inter-modulation converters will become increasingly important. If the modulation conversion can be performed at high bitrates with a small number of operations per bit, then all-optical techniques may offer lower energy consumption compared to optical-electronic-optical approaches. In this paper we experimentally demonstrate an all-optical system incorporating a pair of hybrid-integrated semiconductor optical amplifier (SOA)-based Mach-Zehnder interferometer (MZI) gates which translate RZ-OOK to RZ-DB or RZ-AMI at 42.6 Gbps. This scheme includes a wavelength conversion to arbitrary output wavelength and has potential for high-level photonic integration, scalability to higher bitrates, and should exhibit regenerative properties [2]

    Challenges in Polybinary Modulation for Bandwidth Limited Optical Links

    Get PDF
    Optical links using traditional modulation formats are reaching a plateau in terms of capacity, mainly due to bandwidth limitations in the devices employed at the transmitter and receivers. Advanced modulation formats, which boost the spectral efficiency, provide a smooth migration path towards effectively increase the available capacity. Advanced modulation formats however require digitalization of the signals and digital signal processing blocks to both generate and recover the data. There is therefore a trade-off in terms of efficiency gain vs complexity. Polybinary modulation, a generalized form of partial response modulation, employs simple codification and filtering at the transmitter to drastically increase the spectral efficiency. At the receiver side, polybinary modulation requires low complexity direct detection and very little digital signal processing. This paper provides an overview of the current research status of the key building blocks in polybinary systems. The results clearly show how polybinary modulation effectively reduces the bandwidth requirements on optical links while providing high spectral efficiency

    Impact of Environmental Influences on Multilevel Modulation Formats at the Signal Transmission in the Optical Transmission Medium

    Get PDF
    This paper is devoted to the analysis of environmental influences in the optical transmission medium and their impacts on multilevel modulation formats. An attention is focused on main features and characteristics of environmental negative influences of optical fibers. Consequently, principles for appropriate multilevel modulation formats are introduced together with block schemes representing their main functionalities. The created Simulink model for technologies and communications is verified for real conditions in the optical transmission medium. It can allow executing requested analysis for environmental influences on advanced multilevel modulation formats at the signal transmission. Finally, a comparison of considered multilevel modulations is introduced, using constellation diagrams, signal characteristics, eye diagrams and waterfall curves of individual signals

    System Performance and Limits of Optical Modulation Formats in Dense Wavelength Division Multiplexing Systems

    Get PDF
    In this paper we investigate in OptSim software environment the system performance of intensity and phase modulation formats for different network scenarios and dense wavelength division multiplexing grids. OptSim employs the Time Domain Split Step method to implement the signal distribution equation in a fiber. We investigate intensity formats, such as Non Return to Zero, Return to Zero, Carrier- Suppressed Return to Zero and DuoBinary, and phase modulation formats like Differential Phase-Shift Keying and Differential Quadrature Phase-Shift Keying. The main goal is to compare these formats in terms of bit error rate, Q-factor, optical reach and grid limitations for transmission rates 10, 40 and 100 Gbps per channel and discuss the possibilities of increasing their spectral efficiency. We also focus on other advanced solutions such as the polarization division multiplexing combined with phase modulations, coherent detection and advanced digital signal processing which mainly benefits in spectral efficiency, optical signal to noise ratio and chromatic dispersion tolerances

    Interferometry Applications in All-Optical Communications Networks

    Get PDF
    Throughout the years, the expanded search and flow of information led to an expansion of traffic intensity in today’s optical communication systems. Coherent communications, using the amplitude and phase of the optical wave, resurface as one of the transmission methods to increase the effective bandwidth of optical channels. In this framework, this chapter presents a study on all-optical format conversion of modulated signals, using exclusively interferometric techniques through wavelength conversion, based on Mach-Zehnder interferometers with semiconductor optical amplifiers (MZI-SOA). This technique, when applied in interconnection nodes between optical networks with different bit rates and modulation formats, allows a better efficiency and scalability of the network. The chapter presents an experimental characterization of the static and dynamic properties of the MZI-SOA and explores all-optical techniques for the conversion from amplitude modulation to phase modulation. Finally, it briefly presents the potential of MZI-SOAs for the conversion of amplitude signals to more advanced modulation formats, such as quadrature phase shift keying (QPSK) and quadrature amplitude modulation (QAM) signals

    Transmission transparency and potential convergence of optical network solutions at the physical layer for bit rates from 2.5 Gb·s-1 to 256 Gb·s-1

    Get PDF
    In this paper, we investigate optical network recommendations GPON and XG-PON with triple-play services in terms of physical reach, number of subscribers, transceiver design, modulation format and implementation cost. Despite trends to increase the bit rate from 2.5 Gb s1 to 10 Gb s1 and beyond, TDMPONs cannot cope with bandwidth requirements of future networks. TDM and WDM techniques can be combined, resulting in improved scalability. Longer physical reach can be achieved by deploying active network elements within the transmission path. We investigate these options by considering their potential coexistence at the physical layer. Subsequently, we analyse the upgrade of optical channels to 100 Gb s1 and 256 Gb s1 by using advanced modulation formats, which combine polarization division multiplexing with coherent detection and digital signal processing. We show that PDMQPSK format is suitable for 100 Gb s1 systems and PDM-16QAM is more beneficial at 256 Gb s1. Simulations are performed in the OptSim software environment

    Characterization of wavelength tunable lasers for future optical communication systems

    Get PDF
    The use of tunable lasers (TL) in dense wavelength division multiplexed (DWDM) networks for optical switching, routing and networking has gained a lot of interest in recent years. Employment of such TLs as tunable transmitters in wavelength packet switched (WPS) networks is one of the possible applications of these devices. In such systems, the information to be transmitted could be encoded onto a destination dependent wavelength and the routing of traffic could be performed on a packet-by-packet basis. The authors investigate the possibility of using TLs in DWDM WPS networks by focusing on the characterisation of the instantaneous frequency drift of a TL due to wavelength tuning and direct modulation. Characterization of the linewidth of the TLs is also presented to verify the feasibility of using TLs in systems employing advanced modulation formats
    • 

    corecore