21 research outputs found

    High-Efficiency Low-Voltage Rectifiers for Power Scavenging Systems

    Get PDF
    Abstract Rectifiers are commonly used in electrical energy conversion chains to transform the energy obtained from an AC signal source to a DC level. Conventional bridge and gate cross-coupled rectifier topologies are not sufficiently power efficient, particularly when input amplitudes are low. Depending on their rectifying element, their power efficiency is constrained by either the forward-bias voltage drop of a diode or the threshold voltage of a diode-connected MOS transistor. Advanced passive rectifiers use threshold cancellation techniques to effectively reduce the threshold voltage of MOS diodes. Active rectifiers use active circuits to control the conduction angle of low-loss MOS switches. In this thesis, an active rectifier with a gate cross-coupled topology is proposed, which replaces the diode-connected MOS transistors of a conventional rectifier with low-loss MOS switches. Using the inherent characteristics of MOS transistors as comparators, dynamic biasing of the bulks of main switches and small pull-up transistors, the proposed self-supplied active rectifier exhibits smaller voltage drop across the main switches leading to a higher power efficiency compared to conventional rectifier structures for a wide range of operating frequencies in the MHz range. Delivery of high load currents is another feature of the proposed rectifier. Using the bootstrapping technique, single- and double-reservoir based rectifiers are proposed. They present higher power and voltage conversion efficiencies compared to conventional rectifier structures. With a source amplitude of 3.3 V, when compared to the gate cross-coupled topology, the proposed active rectifier offers power and voltage conversion efficiencies improved by up to 10% and 16% respectively. The proposed rectifier using the bootstrap technique, including double- and single-reservoir schemes, are well suited for very low input amplitudes. They present power and voltage conversion efficiencies of 75% and 76% at input amplitude of 1.0 V and maintain their high efficiencies over input amplitudes greater than 1.0V. Single-reservoir bootstrap rectifier also reduces die area by 70% compared to its double-reservoir counterpart.---------Résumé Les redresseurs sont couramment utilisés dans de nombreux systèmes afin de transformer l'énergie électrique obtenue à partir d'une source alternative en une alimentation continue. Les topologies traditionnelles telles que les ponts de diodes et les redresseurs se servant de transistors à grilles croisées-couplées ne sont pas suffisamment efficaces en terme d’énergie, en particulier pour des signaux à faibles amplitudes. Dépendamment de leur élément de redressement, leur efficacité en termes de consommation d’énergie est limitée soit par la chute de tension de polarisation directe d'une diode, soit par la tension de seuil du transistor MOS. Les redresseurs passifs avancés utilisent une technique de conception pour réduire la tension de seuil des diodes MOS. Les redresseurs actifs utilisent des circuits actifs pour contrôler l'angle de conduction des commutateurs MOS à faible perte. Dans cette thèse, nous avons proposé un redresseur actif avec une topologie en grille croisée-couplée. Elle utilise des commutateurs MOS à faible perte à la place des transistors MOS connectés en diode comme redresseurs. Le circuit proposé utilise: des caractéristiques intrinsèques des transistors MOS pour les montages comparateurs et une polarisation dynamique des substrats des commutateurs principaux supportés par de petits transistors de rappel. Le redresseur proposé présente des faibles chutes de tension à travers le commutateur principal menant à une efficacité de puissance plus élevée par rapport aux structures d’un redresseur conventionnel pour une large gamme de fréquences de fonctionnement de l’ordre des MHz. La conduction des courants de charge élevée est une autre caractéristique du redresseur proposé. En utilisant la méthode de bootstrap, des redresseurs à simple et à double réservoir sont proposés. Ils présentent une efficacité de puissance et un rapport de conversion de tension élevés en comparaison avec les structures des redresseurs conventionnels. Avec une amplitude de source de 3,3 V, le redresseur proposé offre des efficacités de puissance et de conversion de tension améliorées par rapport au circuit à transistors croisés couplés. Ces améliorations atteignent 10% et 16% respectivement. Les redresseurs proposés utilisent la technique de bootstrap. Ils sont bien adaptés pour des amplitudes d'entrée très basses. À une amplitude d'entrée de 1,0 V, ces derniers redresseurs présentent des rendements de conversion de puissance et de tension de 75% et 76%. Le redresseur à simple réservoir réduit également l’aire de silicium requise de 70% par rapport à la version à double-réservoir

    Design of Low-Cost Energy Harvesting and Delivery Systems for Self-Powered Devices: Application to Authentication IC

    Get PDF
    This thesis investigates the development of low-cost energy harvesting and delivery systems for low-power low-duty-cycle devices. Initially, we begin by designing a power management scheme for on-demand power delivery. The baseline implementation is also used to identify critical challenges for low-power energy harvesting. We further propose a robust self-powered energy harvesting and delivery system (EHDS) design as a solution to achieve energy autonomy in standalone systems. The design demonstrates a complete ecosystem for low-overhead pulse-frequency modulated (PFM) harvesting while reducing harvesting window confinement and overall implementation footprint. Two transient-based models are developed for improved accuracy during design space exploration and optimization for both PFM power conversion and energy harvesting. Finally, a low-power authentication IC is demonstrated and projected designs for self-powered System-on-Chips (SoCs) are presented. The proposed designs are proto-typed in two test-chips in a 65nm CMOS process and measurement data showcase improved performance in terms of battery power, cold-start duration, passives (inductance and capacitance) needed, and end-to-end harvesting/conversion efficiency.Ph.D

    Efficient power management circuits for energy harvesting applications

    Get PDF
    Low power IoT devices are growing in numbers and by 2020 there will be more than 25 Billion of those in areas such as wearables, smart homes, remote surveillance, transportation and industrial systems, including many others. Many IoT electronics either will operate from stand-alone energy supply (e.g., battery) or be self-powered by harvesting from ambient energy sources or have both options. Harvesting sustainable energy from ambient environment plays significant role in extending the operation lifetime of these devices and hence, lower the maintenance cost of the system, which in turn help make them integral to simpler systems. Both for battery-powered and harvesting capable systems, efficient power delivery unit remains an essential component for maximizing energy efficiency. The goal of this research is to investigate the challenges of energy delivery for low power electronics considering both energy harvesting as well as battery-powered conditions and to address those challenges. Different challenges of energy harvesting from low voltage energy sources based on the limitations of the sources, the type of the regulator used and the pattern of the load demands have been investigated. Different aspects of the each challenges are further investigated to seek optimized solutions for both load specific and generalized applications. A voltage boost mechanism is chosen as the primary mechanism to investigate and to addressing those challenges, befitting the need for low power applications which often rely on battery voltage or on low voltage energy harvesting sources. Additionally, a multiple output buck regulator is also discussed. The challenges analyzed include very low voltage start up issues for an inductive boost regulator, cascading of boost regulator stages, and reduction of the number of external component through reusing those. Design techniques for very high conversion ratio, bias current reduction with autonomous bias gating, battery-less cold start, component and power stage multiplexing for reconfigurable and multi-domain regulators are presented. Measurement results from several silicon prototypes are also presented.Ph.D

    RF Induced Nonlinear Effects in High-Speed Electronics

    Get PDF
    Previous experiments and research have indicated rectification of modulated electromagnetic interference can cause upset effects in digital electronics. Although RF rectification has been observed in discrete components, only speculation of the most sensitive mechanisms causing RF rectification has been proposed. Through theoretical analysis, experiments, and simulations, the p-n junctions in ESD protection circuits were determined to be susceptible to rectifying pulse modulated RF signals. Threshold experiments on several logic families of CMOS inverters provided indications to susceptibilities of electronics based on their input ESD protection topology. Parasitic elements have also been determined to cause additional effects including bias shifts, state changes, RF gain, and circuit resonances. DC and high frequency parameter extraction techniques were used to build diode and generic inverter models including package parasitics in PSPICE. Models were designed which gave good agreement to measured rectification drive curves, input impedance resonances, output voltage bias shifts, and induced spurious oscillations

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication

    Development of a temperature insensitive current controlled current source for LNA bias circuit applications

    Get PDF
    The research described in this thesis is concerned with the analysis, design and development of a novel temperature insensitive Current Controlled Current Source (CCCS), in bipolar technology, in order to provide accurate amplification of a Proportional To Absolute Temperature (PTAT) reference current. The output current of the CCCS is intended for application as the bias current for a bipolar Low Noise Amplifier (LNA) in order to minimise gain variations with temperature across the industrial temperature range (-40·C to 8S·C). The thesis begins with an explanation of key parameters concerned with LNA design and a target specification is defined. In Chapter 2, a conventional LNA, with constant with temperature bias current, is developed following a methodical approach based on conventional techniques. This meets the previously defined specification at room temperature but exhibits large gain variations with changes in temperature. The analysis and simulation results of this conventional LNA serve as a benchmark for comparison with later designs. In order to minimise any gain variations with temperature of a bipolar amplifier it is well known that the applied bias current should be PT AT. Thus, a thorough analysis and comparative review of traditional and novel PTAT reference current generator circuits is conducted in Chapters 3 and 4. Based on these findings the PTAT generator exhibiting best performance in terms of output current accuracy and insensitivity to power supply variations is presented. However, this circuit cannot accurately produce large rnA level currents necessary for LNA bias applications so that sufficient linearity of the LNA is maintained. Thus, a need for some form of accurate CCCS or Voltage Controlled Current Source (VCCS), which should be temperature insensitive in order to preserve the desired temperature coefficient of the reference current/voltage, is highlighted. Traditional VCCS/CCCS designs are investigated in Chapter 5. Limitations of these approaches leads to the design and development ofa novel CCCS with built in PTAT reference. The presented CCCS utilises a new, previously unseen, architecture and has led to a patent application [1]. The author has reported the majority of this work in technical literature [2-4]. In Chapter 6, the output of the novel CCCS is adapted to include the conventional LNA circuit designed previously in Chapter 2. The results of the combined LNA and CCCS are compared with the conventional LNA. The combined LNA and CCCS offers a dramatic reduction in gain variation with temperature

    Efficient, low-distortion switch-mode power amplifier for amplitude modulation

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February 2011.Cataloged from PDF version of thesis. "September 28, 2010."Includes bibliographical references (pages 85-87).Amplitude modulation systems are used in many areas of engineering, especially communication based disciplines. Typical systems have low-level signals which encode the desired information to be transmitted. These low-level signals are usually not of adequate power to transmit the desired information across a target medium, thus requiring modulation and power amplification. In general, two goals of power amplifier design are low-distortion and high-efficiency. To meet these goals, a unique switch-mode power amplifier intended for amplitude modulation which utilizes spectral content at the carrier frequency is designed, simulated, and built. Theoretical predictions of total harmonic distortion (THD) and efficiency are made, and the constructed prototype results are measured. The THD for a 1 kHz modulating tone is predicted to be 0.9% and measured to be 4.15% worst case. The amplifier output stage efficiency is predicted to be 95.8% and measured to be 95.4% worst case.by Christopher Buenrostro.M.Eng

    Advanced modelling and design considerations for interconnects in ultra- low power digital system

    Get PDF
    PhD ThesisAs Very Large Scale Integration (VLSI) is progressing in very Deep submicron (DSM) regime without decreasing chip area, the importance of global interconnects increases but at the cost of performance and power consumption for advanced System-on- Chip (SoC)s. However, the growing complexity of interconnects behaviour presents a challenge for their adequate modelling, whereby conventional circuit theoretic approaches cannot provide sufficient accuracy. During the last decades, fractional differential calculus has been successfully applied to modelling certain classes of dynamical systems while keeping complexity of the models under acceptable bounds. For example, fractional calculus can help capturing inherent physical effects in electrical networks in a compact form, without following conventional assumptions about linearization of non-linear interconnect components. This thesis tackles the problem of interconnect modelling in its generality to simulate a wide range of interconnection configurations, its capacity to emulate irregular circuit elements and its simplicity in the form of responsible approximation. This includes modelling and analysing interconnections considering their irregular components to add more flexibility and freedom for design. The aim is to achieve the simplest adaptable model with the highest possible accuracy. Thus, the proposed model can be used for fast computer simulation of interconnection behaviour. In addition, this thesis proposes a low power circuit for driving a global interconnect at voltages close to the noise level. As a result, the proposed circuit demonstrates a promising solution to address the energy and performance issues related to scaling effects on interconnects along with soft errors that can be caused by neutron particles. The major contributions of this thesis are twofold. Firstly, in order to address Ultra-Low Power (ULP) design limitations, a novel driver scheme has been configured. This scheme uses a bootstrap circuitry which boosts the driver’s ability to drive a long interconnect with an important feedback feature in it. Hence, this approach achieves two objectives: improving performance and mitigating power consumption. Those achievements are essential in designing ULP circuits along with occupying a smaller footprint and being immune to noise, observed in this design as well. These have been verified by comparing the proposed design to the previous and traditional circuits using a simulation tool. Additionally, the boosting based approach has been shown beneficial in mitigating the effects of single event upset (SEU)s, which are known to affect DSM circuits working under low voltages. Secondly, the CMOS circuit driving a distributed RLC load has been brought in its analysis into the fractional order domain. This model will make the on-chip interconnect structure easy to adjust by including the effect of fractional orders on the interconnect timing, which has not been considered before. A second-order model for the transfer functions of the proposed general structure is derived, keeping the complexity associated with second-order models for this class of circuits at a minimum. The approach here attaches an important trait of robustness to the circuit design procedure; namely, by simply adjusting the fractional order we can avoid modifying the circuit components. This can also be used to optimise the estimation of the system’s delay for a broad range of frequencies, particularly at the beginning of the design flow, when computational speed is of paramount importance.Iraqi Ministry of Higher Education and Scientific Researc

    On-Chip Analog Circuit Design Using Built-In Self-Test and an Integrated Multi-Dimensional Optimization Platform

    Get PDF
    Nowadays, the rapid development of system-on-chip (SoC) market introduces tremendous complexity into the integrated circuit (IC) design. Meanwhile, the IC fabrication process is scaling down to allow higher density of integration but makes the chips more sensitive to the process-voltage-temperature (PVT) variations. A successful IC product not only imposes great pressure on the IC designers, who have to handle wider variations and enforce more design margins, but also challenges the test procedure, leading to more check points and longer test time. To relax the designers’ burden and reduce the cost of testing, it is valuable to make the IC chips able to test and tune itself to some extent. In this dissertation, a fully integrated in-situ design validation and optimization (VO) hardware for analog circuits is proposed. It implements in-situ built-in self-test (BIST) techniques for analog circuits. Based on the data collected from BIST, the error between the measured and the desired performance of the target circuit is evaluated using a cost function. A digital multi-dimensional optimization engine is implemented to adaptively adjust the analog circuit parameters, seeking the minimum value of the cost function and achieving the desired performance. To verify this concept, study cases of a 2nd/4th active-RC band-pass filter (BPF) and a 2nd order Gm-C BPF, as well as all BIST and optimization blocks, are adopted on-chip. Apart from the VO system, several improved BIST techniques are also proposed in this dissertation. A single-tone sinusoidal waveform generator based on a finite-impulse-response (FIR) architecture, which utilizes an optimization algorithm to enhance its spur free dynamic range (SFDR), is proposed. It achieves an SFDR of 59 to 70 dBc from 150 to 850 MHz after the optimization procedure. A low-distortion current-steering two-tone sinusoidal signal synthesizer based on a mixing-FIR architecture is also proposed. The two-tone synthesizer extends the FIR architecture to two stages and implements an up-conversion mixer to generate the two tones, achieving better than -68 dBc IM3 below 480 MHz LO frequency without calibration. Moreover, an on-chip RF receiver linearity BIST methodology for continuous and discrete-time hybrid baseband chain is proposed. The proposed receiver chain implements a charge-domain FIR filter to notch the two excitation signals but expose the third order intermodulation (IM3) tones. It simplifies the linearity measurement procedure–using a power detector is enough to analyze the receiver’s linearity. Finally, a low cost fully digital built-in analog tester for linear-time-invariant (LTI) analog blocks is proposed. It adopts a time-to-digital converter (TDC) to measure the delays corresponded to a ramp excitation signal and is able to estimate the pole or zero locations of a low-pass LTI system
    corecore