3,613 research outputs found

    Global Innovations in Measurement and Evaluation

    Get PDF
    We researched the latest developments in theory and practice in measurement and evaluation. And we found that new thinking, techniques, and technology are influencing and improving practice. This report highlights 8 developments that we think have the greatest potential to improve evaluation and programme design, and the careful collection and use of data. In it, we seek to inform and inspire—to celebrate what is possible, and encourage wider application of these ideas

    Crisis Analytics: Big Data Driven Crisis Response

    Get PDF
    Disasters have long been a scourge for humanity. With the advances in technology (in terms of computing, communications, and the ability to process and analyze big data), our ability to respond to disasters is at an inflection point. There is great optimism that big data tools can be leveraged to process the large amounts of crisis-related data (in the form of user generated data in addition to the traditional humanitarian data) to provide an insight into the fast-changing situation and help drive an effective disaster response. This article introduces the history and the future of big crisis data analytics, along with a discussion on its promise, challenges, and pitfalls

    Social Media Analytics in Disaster Response: A Comprehensive Review

    Full text link
    Social media has emerged as a valuable resource for disaster management, revolutionizing the way emergency response and recovery efforts are conducted during natural disasters. This review paper aims to provide a comprehensive analysis of social media analytics for disaster management. The abstract begins by highlighting the increasing prevalence of natural disasters and the need for effective strategies to mitigate their impact. It then emphasizes the growing influence of social media in disaster situations, discussing its role in disaster detection, situational awareness, and emergency communication. The abstract explores the challenges and opportunities associated with leveraging social media data for disaster management purposes. It examines methodologies and techniques used in social media analytics, including data collection, preprocessing, and analysis, with a focus on data mining and machine learning approaches. The abstract also presents a thorough examination of case studies and best practices that demonstrate the successful application of social media analytics in disaster response and recovery. Ethical considerations and privacy concerns related to the use of social media data in disaster scenarios are addressed. The abstract concludes by identifying future research directions and potential advancements in social media analytics for disaster management. The review paper aims to provide practitioners and researchers with a comprehensive understanding of the current state of social media analytics in disaster management, while highlighting the need for continued research and innovation in this field.Comment: 11 page

    Coastal management and adaptation: an integrated data-driven approach

    Get PDF
    Coastal regions are some of the most exposed to environmental hazards, yet the coast is the preferred settlement site for a high percentage of the global population, and most major global cities are located on or near the coast. This research adopts a predominantly anthropocentric approach to the analysis of coastal risk and resilience. This centres on the pervasive hazards of coastal flooding and erosion. Coastal management decision-making practices are shown to be reliant on access to current and accurate information. However, constraints have been imposed on information flows between scientists, policy makers and practitioners, due to a lack of awareness and utilisation of available data sources. This research seeks to tackle this issue in evaluating how innovations in the use of data and analytics can be applied to further the application of science within decision-making processes related to coastal risk adaptation. In achieving this aim a range of research methodologies have been employed and the progression of topics covered mark a shift from themes of risk to resilience. The work focuses on a case study region of East Anglia, UK, benefiting from the input of a partner organisation, responsible for the region’s coasts: Coastal Partnership East. An initial review revealed how data can be utilised effectively within coastal decision-making practices, highlighting scope for application of advanced Big Data techniques to the analysis of coastal datasets. The process of risk evaluation has been examined in detail, and the range of possibilities afforded by open source coastal datasets were revealed. Subsequently, open source coastal terrain and bathymetric, point cloud datasets were identified for 14 sites within the case study area. These were then utilised within a practical application of a geomorphological change detection (GCD) method. This revealed how analysis of high spatial and temporal resolution point cloud data can accurately reveal and quantify physical coastal impacts. Additionally, the research reveals how data innovations can facilitate adaptation through insurance; more specifically how the use of empirical evidence in pricing of coastal flood insurance can result in both communication and distribution of risk. The various strands of knowledge generated throughout this study reveal how an extensive range of data types, sources, and advanced forms of analysis, can together allow coastal resilience assessments to be founded on empirical evidence. This research serves to demonstrate how the application of advanced data-driven analytical processes can reduce levels of uncertainty and subjectivity inherent within current coastal environmental management practices. Adoption of methods presented within this research could further the possibilities for sustainable and resilient management of the incredibly valuable environmental resource which is the coast

    Toward an integrated disaster management approach: How artificial intelligence can boost disaster management

    Get PDF
    Technical and methodological enhancement of hazards and disaster research is identified as a critical question in disaster management. Artificial intelligence (AI) applications, such as tracking and mapping, geospatial analysis, remote sensing techniques, robotics, drone technology, machine learning, telecom and network services, accident and hot spot analysis, smart city urban planning, transportation planning, and environmental impact analysis, are the technological components of societal change, having significant implications for research on the societal response to hazards and disasters. Social science researchers have used various technologies and methods to examine hazards and disasters through disciplinary, multidisciplinary, and interdisciplinary lenses. They have employed both quantitative and qualitative data collection and data analysis strategies. This study provides an overview of the current applications of AI in disaster management during its four phases and how AI is vital to all disaster management phases, leading to a faster, more concise, equipped response. Integrating a geographic information system (GIS) and remote sensing (RS) into disaster management enables higher planning, analysis, situational awareness, and recovery operations. GIS and RS are commonly recognized as key support tools for disaster management. Visualization capabilities, satellite images, and artificial intelligence analysis can assist governments in making quick decisions after natural disasters

    A review of the internet of floods : near real-time detection of a flood event and its impact

    Get PDF
    Worldwide, flood events frequently have a dramatic impact on urban societies. Time is key during a flood event in order to evacuate vulnerable people at risk, minimize the socio-economic, ecologic and cultural impact of the event and restore a society from this hazard as quickly as possible. Therefore, detecting a flood in near real-time and assessing the risks relating to these flood events on the fly is of great importance. Therefore, there is a need to search for the optimal way to collect data in order to detect floods in real time. Internet of Things (IoT) is the ideal method to bring together data of sensing equipment or identifying tools with networking and processing capabilities, allow them to communicate with one another and with other devices and services over the Internet to accomplish the detection of floods in near real-time. The main objective of this paper is to report on the current state of research on the IoT in the domain of flood detection. Current trends in IoT are identified, and academic literature is examined. The integration of IoT would greatly enhance disaster management and, therefore, will be of greater importance into the future

    Smart Cities: An In-Depth Study of AI Algorithms and Advanced Connectivity

    Get PDF
    The goal of smart city development is to improve the quality of life by incorporating technology into daily activities. Artificial intelligence (AI) is critical to the ongoing development of future smart cities. The Internet of Things (IoT) idea connects every internet-enabled device for improved access and control. AI in various domains has changed ordinary towns into highly equipped smart cities. Machine learning and deep learning algorithms have proven indispensable in a variety of industries, and they are now being implemented into smart city concepts to automate and improve urban activities and operations on a large scale. IoT and machine learning technology are frequently used in smart cities to collect data from various sources. This article delves deeply into the significance, scope, and developments of AI-based smart cities. It also addresses some of the difficulties and restrictions associated with smart cities powered by AI. The goal of the study is to inspire and encourage academics to create original smart city solutions based on AI technologies

    Artificial intelligence and visual analytics in geographical space and cyberspace: Research opportunities and challenges

    Get PDF
    In recent decades, we have witnessed great advances on the Internet of Things, mobile devices, sensor-based systems, and resulting big data infrastructures, which have gradually, yet fundamentally influenced the way people interact with and in the digital and physical world. Many human activities now not only operate in geographical (physical) space but also in cyberspace. Such changes have triggered a paradigm shift in geographic information science (GIScience), as cyberspace brings new perspectives for the roles played by spatial and temporal dimensions, e.g., the dilemma of placelessness and possible timelessness. As a discipline at the brink of even bigger changes made possible by machine learning and artificial intelligence, this paper highlights the challenges and opportunities associated with geographical space in relation to cyberspace, with a particular focus on data analytics and visualization, including extended AI capabilities and virtual reality representations. Consequently, we encourage the creation of synergies between the processing and analysis of geographical and cyber data to improve sustainability and solve complex problems with geospatial applications and other digital advancements in urban and environmental sciences

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore