258 research outputs found

    Frequency-Domain Signal Processing for Spectrally-Enhanced CP-OFDM Waveforms in 5G New Radio

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) has been selected as the basis for the fifth-generation new radio (5G-NR) waveform developments. However, effective signal processing tools are needed for enhancing the OFDM spectrum in various advanced transmission scenarios. In earlier work, we have shown that fast-convolution (FC) processing is a very flexible and efficient tool for filtered-OFDM signal generation and receiver-side subband filtering, e.g., for the mixed-numerology scenarios of the 5G-NR. FC filtering approximates linear convolution through effective fast Fourier transform (FFT)-based circular convolutions using partly overlapping processing blocks. However, with the continuous overlap-and-save and overlap-and-add processing models with fixed block-size and fixed overlap, the FC-processing blocks cannot be aligned with all OFDM symbols of a transmission frame. Furthermore, 5G-NR numerology does not allow to use transform lengths shorter than 128 because this would lead to non-integer cyclic prefix (CP) lengths. In this article, we present new FC-processing schemes which solve the mentioned limitations. These schemes are based on dynamically adjusting the overlap periods and extrapolating the CP samples, which make it possible to align the FC blocks with each OFDM symbol, even in case of variable CP lengths. This reduces complexity and latency, e.g., in mini-slot transmissions and, as an example, allows to use 16-point transforms in case of a 12-subcarrier-wide subband allocation, greatly reducing the implementation complexity. On the receiver side, the proposed scheme makes it possible to effectively combine cascaded inverse and forward FFT units in FC-filtered OFDM processing. Transform decomposition is used to simplify these computations. Very extensive set of numerical results is also provided, in terms of radio-link performance and associated processing complexity.Comment: This work has been submitted to the IEEE Transactions on Wireless Communications for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Low-Complexity Multicarrier Waveform Processing Schemes fo Future Wireless Communications

    Get PDF
    Wireless communication systems deliver enormous variety of services and applications. Nowa- days, wireless communications play a key-role in many fields, such as industry, social life, education, and home automation. The growing demand for wireless services and applications has motivated the development of the next generation cellular radio access technology called fifth-generation new radio (5G-NR). The future networks are required to magnify the delivered user data rates to gigabits per second, reduce the communication latency below 1 ms, and en- able communications for massive number of simple devices. Those main features of the future networks come with new demands for the wireless communication systems, such as enhancing the efficiency of the radio spectrum use at below 6 GHz frequency bands, while supporting various services with quite different requirements for the waveform related key parameters. The current wireless systems lack the capabilities to handle those requirements. For exam- ple, the long-term evolution (LTE) employs the cyclic-prefix orthogonal frequency-division multiplexing (CP-OFDM) waveform, which has critical drawbacks in the 5G-NR context. The basic drawback of CP-OFDM waveform is the lack of spectral localization. Therefore, spectrally enhanced variants of CP-OFDM or other multicarrier waveforms with well localized spectrum should be considered. This thesis investigates spectrally enhanced CP-OFDM (E-OFDM) schemes to suppress the out-of-band (OOB) emissions, which are normally produced by CP-OFDM. Commonly, the weighted overlap-and-add (WOLA) scheme applies smooth time-domain window on the CP- OFDM waveform, providing spectrally enhanced subcarriers and reducing the OOB emissions with very low additional computational complexity. Nevertheless, the suppression perfor- mance of WOLA-OFDM is not sufficient near the active subband. Another technique is based on filtering the CP-OFDM waveform, which is referred to as F-OFDM. F-OFDM is able to provide well-localized spectrum, however, with significant increase in the computational com- plexity in the basic scheme with time-domain filters. Also filter-bank multicarrier (FBMC) waveforms are included in this study. FBMC has been widely studied as a potential post- OFDM scheme with nearly ideal subcarrier spectrum localization. However, this scheme has quite high computational complexity while being limited to uniformly distributed sub- bands. Anyway, filter-bank based waveform processing is one of the main topics of this work. Instead of traditional polyphase network (PPN) based uniform filter banks, the focus is on fast-convolution filter banks (FC-FBs), which utilize fast Fourier transform (FFT) domain processing to realize effectively filter-banks with high flexibility in terms of subcarrier bandwidths and center frequencies. FC-FBs are applied for both FBMC and F-OFDM waveform genera- tion and processing with greatly increased flexibility and significantly reduced computational complexity. This study proposes novel structures for FC-FB processing based on decomposition of the FC-FB structure consisting of forward and inverse discrete Fourier transforms (DFT and IDFT). The decomposition of multirate FC provides means of reducing the computational complexity in some important specific scenarios. A generic FC decomposition model is proposed and analyzed. This scheme is mathematically equivalent to the corresponding direct FC imple- mentation, with exactly the same performance. The benefits of the optimized decomposition structure appear mainly in communication scenarios with relatively narrow active transmis- sion band, resulting in significantly reduced computational complexity compared to the direct FC structure. The narrowband scenarios find their places in the recent 3GPP specification of cellular low- power wide-area (LPWA) access technology called narrowband internet-of-things (NB-IoT). NB-IoT aims at introducing the IoT to LTE and GSM frequency bands in coexistence with those technologies. NB-IoT uses CP-OFDM based waveforms with parameters compatible with the LTE. However, additional means are needed also for NB-IoT transmitters to improve the spec- trum localization. For NB-IoT user devices, it is important to consider ultra-low complexity solutions, and a look-up table (LUT) based approach is proposed to implement NB-IoT uplink transmitters with filtered waveforms. This approach provides completely multiplication-free digital baseband implementations and the addition rates are similar or smaller than in the basic NB-IoT waveform generation without the needed elements for spectrum enhancement. The basic idea includes storing full or partial waveforms for all possible data symbol combinations. Then the transmitted waveform is composed through summation of needed stored partial waveforms and trivial phase rotations. The LUT based scheme is developed with different vari- ants tackling practical implementations issues of NB-IoT device transmitters, considering also the effects of nonlinear power amplifier. Moreover, a completely multiplication and addition- free LUT variant is proposed and found to be feasible for very narrowband transmission, with up to 3 subcarriers. The finite-wordlength performance of LUT variants is evaluated through simulations

    A Unique Wavelet-based Multicarrier System with and without MIMO over Multipath Channels with AWGN

    Get PDF
    yesRecent studies suggest that multicarrier systems using wavelets outperform conventional OFDM systems using the FFT, in that they have well-contained side lobes, improved spectral efficiency and BER performance, and they do not require a cyclic prefix. Here we study the wavelet packet and discrete wavelet transforms, comparing the BER performance of wavelet transform-based multicarrier systems and Fourier based OFDM systems, for multipath Rayleigh channels with AWGN. In the proposed system zero-forcing channel estimation in the frequency domain has been used. Results confirm that discrete wavelet-based systems using Daubechies wavelets outperform both wavelet packet transform- based systems and FFT-OFDM systems in terms of BER. Finally, Alamouti coding and maximal ratio combining schemes were employed in MIMO environments, where results show that the effects of multipath fading were greatly reduced by the antenna diversity

    Unified Framework for Multicarrier and Multiple Access based on Generalized Frequency Division Multiplexing

    Get PDF
    The advancements in wireless communications are the key-enablers of new applications with stringent requirements in low-latency, ultra-reliability, high data rate, high mobility, and massive connectivity. Diverse types of devices, ranging from tiny sensors to vehicles, with different capabilities need to be connected under various channel conditions. Thus, modern connectivity and network techniques at all layers are essential to overcome these challenges. In particular, the physical layer (PHY) transmission is required to achieve certain link reliability, data rate, and latency. In modern digital communications systems, the transmission is performed by means of a digital signal processing module that derives analog hardware. The performance of the analog part is influenced by the quality of the hardware and the baseband signal denoted as waveform. In most of the modern systems such as fifth generation (5G) and WiFi, orthogonal frequency division multiplexing (OFDM) is adopted as a favorite waveform due to its low-complexity advantages in terms of signal processing. However, OFDM requires strict requirements on hardware quality. Many devices are equipped with simplified analog hardware to reduce the cost. In this case, OFDM does not work properly as a result of its high peak-to-average power ratio (PAPR) and sensitivity to synchronization errors. To tackle these problems, many waveforms design have been recently proposed in the literature. Some of these designs are modified versions of OFDM or based on conventional single subcarrier. Moreover, multicarrier frameworks, such as generalized frequency division multiplexing (GFDM), have been proposed to realize varieties of conventional waveforms. Furthermore, recent studies show the potential of using non-conventional waveforms for increasing the link reliability with affordable complexity. Based on that, flexible waveforms and transmission techniques are necessary to adapt the system for different hardware and channel constraints in order to fulfill the applications requirements while optimizing the resources. The objective of this thesis is to provide a holistic view of waveforms and the related multiple access (MA) techniques to enable efficient study and evaluation of different approaches. First, the wireless communications system is reviewed with specific focus on the impact of hardware impairments and the wireless channel on the waveform design. Then, generalized model of waveforms and MA are presented highlighting various special cases. Finally, this work introduces low-complexity architectures for hardware implementation of flexible waveforms. Integrating such designs with software-defined radio (SDR) contributes to the development of practical real-time flexible PHY.:1 Introduction 1.1 Baseband transmission model 1.2 History of multicarrier systems 1.3 The state-of-the-art waveforms 1.4 Prior works related to GFDM 1.5 Objective and contributions 2 Fundamentals of Wireless Communications 2.1 Wireless communications system 2.2 RF transceiver 2.2.1 Digital-analogue conversion 2.2.2 QAM modulation 2.2.3 Effective channel 2.2.4 Hardware impairments 2.3 Waveform aspects 2.3.1 Single-carrier waveform 2.3.2 Multicarrier waveform 2.3.3 MIMO-Waveforms 2.3.4 Waveform performance metrics 2.4 Wireless Channel 2.4.1 Line-of-sight propagation 2.4.2 Multi path and fading process 2.4.3 General baseband statistical channel model 2.4.4 MIMO channel 2.5 Summary 3 Generic Block-based Waveforms 3.1 Block-based waveform formulation 3.1.1 Variable-rate multicarrier 3.1.2 General block-based multicarrier model 3.2 Waveform processing techniques 3.2.1 Linear and circular filtering 3.2.2 Windowing 3.3 Structured representation 3.3.1 Modulator 3.3.2 Demodulator 3.3.3 MIMO Waveform processing 3.4 Detection 3.4.1 Maximum-likelihood detection 3.4.2 Linear detection 3.4.3 Iterative Detection 3.4.4 Numerical example and insights 3.5 Summary 4 Generic Multiple Access Schemes 57 4.1 Basic multiple access and multiplexing schemes 4.1.1 Infrastructure network system model 4.1.2 Duplex schemes 4.1.3 Common multiplexing and multiple access schemes 4.2 General multicarrier-based multiple access 4.2.1 Design with fixed set of pulses 4.2.2 Computational model 4.2.3 Asynchronous multiple access 4.3 Summary 5 Time-Frequency Analyses of Multicarrier 5.1 General time-frequency representation 5.1.1 Block representation 5.1.2 Relation to Zak transform 5.2 Time-frequency spreading 5.3 Time-frequency block in LTV channel 5.3.1 Subcarrier and subsymbol numerology 5.3.2 Processing based on the time-domain signal 5.3.3 Processing based on the frequency-domain signal 5.3.4 Unified signal model 5.4 summary 6 Generalized waveforms based on time-frequency shifts 6.1 General time-frequency shift 6.1.1 Time-frequency shift design 6.1.2 Relation between the shifted pulses 6.2 Time-frequency shift in Gabor frame 6.2.1 Conventional GFDM 6.3 GFDM modulation 6.3.1 Filter bank representation 6.3.2 Block representation 6.3.3 GFDM matrix structure 6.3.4 GFDM demodulator 6.3.5 Alternative interpretation of GFDM 6.3.6 Orthogonal modulation and GFDM spreading 6.4 Summary 7 Modulation Framework: Architectures and Applications 7.1 Modem architectures 7.1.1 General modulation matrix structure 7.1.2 Run-time flexibility 7.1.3 Generic GFDM-based architecture 7.1.4 Flexible parallel multiplications architecture 7.1.5 MIMO waveform architecture 7.2 Extended GFDM framework 7.2.1 Architectures complexity and flexibility analysis 7.2.2 Number of multiplications 7.2.3 Hardware analysis 7.3 Applications of the extended GFDM framework 7.3.1 Generalized FDMA 7.3.2 Enchantment of OFDM system 7.4 Summary 7 Conclusions and Future work

    Orthogonal chirp division multiplexing for coherent optical fiber communications

    Get PDF
    In this paper, we propose an orthogonal chirp division multiplexing (OCDM) technique for coherent optical communication. OCDM is the principle of orthogonally multiplexing a group of linear chirped waveforms for high-speed data communication, achieving the maximum spectral efficiency (SE) for chirp spread spectrum, in a similar way as the orthogonal frequency division multiplexing (OFDM) does for frequency division multiplexing. In the coherent optical (CO)-OCDM, Fresnel transform formulates the synthesis of the orthogonal chirps; discrete Fresnel transform (DFnT) realizes the CO-OCDM in the digital domain. As both the Fresnel and Fourier transforms are trigonometric transforms, the CO-OCDM can be easily integrated into the existing CO-OFDM systems. Analyses and numerical results are provided to investigate the transmission of CO-OCDM signals over optical fibers. Moreover, experiments of 36-Gbit/s CO-OCDM signal are carried out to validate the feasibility and confirm the analyses. It is shown that the CO-OCDM can effectively compensate the dispersion and is more resilient to fading and noise impairment than OFDM

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Digital signal processing for fiber-optic communication systems

    Get PDF
    As the available bandwidth of optical fibers has been almost fully exploited, Digital Signal Processing (DSP) comes to rescue and is a critical technology underpinning the next generation advanced fiber-optic systems. Literally, it contributes two principal enforcements with respect to information communication. One is the implementation of spectrally-efficient modulation schemes, and the other is the guarantee of the recovery of information from the spectrally-efficient optical signals after channel transmission. The dissertation is dedicated to DSP techniques for the advanced fiber-optic systems. It consists of two main research topics. The first topic is about Fast-orthogonal frequency-division multiplexing (OFDM) — a variant OFDM scheme whose subcarrier spacing is half of that of conventional OFDM. The second one is about Fresnel transform with the derivation of an interesting discrete Fresnel transform (DFnT), and the proposal of orthogonal chirp-division multiplexing (OCDM), which is fundamentally underlain by the Fresnel transform. In the first part, equalization and signal recovery problems result from the halved subcarrier spacing in both double-sideband (DSB) and single-sideband (SSB) modulated Fast-OFDM systems are studied, respectively. By exploiting the relation between the multiplexing kernels of Fast-OFDM systems and Fourier transform, equalization algorithms are proposed for respective Fast-OFDM systems for information recovery. Detailed analysis is also provided. With the proposed algorithms, the DSB Fast-OFDM was experimentally implemented by intensity-modulation and direct detection in the conventional 1.55-μm and the emerging 2-μm fiber-optic systems, and the SSB Fast-OFDM was first implemented in coherent fiber-optic system with a spectral efficiency of 6 bit/s/Hz at 36 Gbps, for the first time. In the second part, Fresnel transform from optical Fresnel diffraction is studied. The discrete Fresnel transform (DFnT) is derived, as an interesting transformation that would be potentially useful for DSP. Its properties are proved. One of the attractive properties, the convolution-preservation property states that the DFnT of a circular convolution of two sequences is equal to the DFnT of either one convolving with the other. One application of DFnT is practically utilized in the proposal of OCDM. In the OCDM system, a large number of orthogonal chirped waveforms are multiplexed for high-speed communication, achieving the maximum spectral efficiency of chirp spread spectrum systems, in the same way as OFDM attains the maximum spectral efficiency of frequency-division multiplexing. Owing to the unique time-frequency properties of chirped waveforms, OCDM outperforms OFDM and single-carrier systems, and is more resilient against the noise effect, especially, when time-domain and frequency-domain distortions are severe. Experiments were carried out to validate the feasibility and advantages of the proposed OCDM systems
    corecore