1,048 research outputs found

    Enhancement of the Tracking Performance for Robot Manipulator by Using the Feed-forward Scheme and Reasonable Switching Mechanism

    Get PDF
    Robot manipulator has become an exciting topic for many researchers during several decades. They have investigated the advanced algorithms such as sliding mode control, neural network, or genetic scheme to implement these developments. However, they lacked the integration of these algorithms to explore many potential expansions. Simultaneously, the complicated system requires a lot of computational costs, which is not always supported. Therefore, this paper presents a novel design of switching mechanisms to control the robot manipulator. This investigation is expected to achieve superior performance by flexibly adjusting various strategies for better selection. The Proportional-Integral-Derivative (PID) scheme is well-known, easy to implement, and ensures rapid computation while it might not have much control effect. The advanced interval type-2 fuzzy sliding mode control properly deals with nonlinear factors and disturbances. Consequently, the PID scheme is switched when the tracking error is less than the threshold or is far from the target. Otherwise, the interval type-2 fuzzy sliding mode control scheme is activated to cope with unknown factors. The main contributions of this paper are (i) the recommendation of a suitable switching mechanism to drive the robot manipulator, (ii) the successful integration of the interval type-2 fuzzy sliding mode control to track the desired trajectory, and (iii) the launching of several tests to validate the proposed controller with robot model. From these achievements, it would be stated that the proposed approach is effective in tracking performance, robust in disturbance-rejection, and feasible in practical implementation

    Controlador híbrido robusto basado en red neuronal fuzzy de intervalo tipo 2 y modo deslizante de alto orden para robots manipuladores

    Get PDF
    Industrial arms should be able to perform their duties in environments where unpredictable conditions and perturbations are present. In this paper, controlling a robotic manipulator is intended under significant external perturbations and parametric uncertainties. Type-2 fuzzy logic is an appropriate choice in the face of uncertain environments, for various reasons, including utilizing fuzzy membership functions. Also, using the neural network (NN) can increase robustness of the controller. Although neural network does not basically need to build its type-2 fuzzy rules, the initial rules based on sliding surface of higher order sliding mode controller (HOSMC) can improve the system's performance. In addition, self-regulation feature of the controller, which is based on the existence of the neural network in the central type-2 fuzzy controller block, increases the robustness of the method even more. Effective performance of the proposed controller (IT2FNN-HOSMC) is shown under various perturbations in numerical simulations.Los brazos industriale deben poder realizar sus tareas en entornos donde existen condiciones y perturbaciones impredecibles. En este artículo, el control de un manipulador robótico está bajo perturbaciones externas significativas e incertidumbres paramétricas. La lógica difusa de tipo 2 es una opción adecuada frente a entornos inciertos, por varias razones, incluida la utilización de funciones de membresía difusas. Además, el uso de la red neuronal (NN) puede aumentar la robustez del controlador. Aunque la red neuronal no necesita básicamente construir sus reglas difusas tipo 2, las reglas iniciales basadas en la superficie deslizante del controlador de modo deslizante de orden superior (HOSMC) pueden mejorar el rendimiento del sistema. Además, la función de autorregulación del controlador, que se basa en la existencia de la red neuronal en el bloque central del controlador difuso tipo 2, aumenta aún más la robustez del método. El rendimiento efectivo del controlador propuesto (IT2FNN-HOSMC) se muestra bajo varias perturbaciones en simulaciones numéricas

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    Intelligent Sliding Surface Design Methods Applied to an IBVS System for Robot Manipulators

    Get PDF
    The controller of an image‐based visual servoing (IBVS) system is based on the design of the kinematic velocity controller which guarantees exponentially decreasing feature errors. In fact, this controller is using the sliding surface approach of classical Sliding Mode Control (SMC). In SMC, the system dynamics are taken into consideration and the sliding surface is designed according to the physical limitations and desired convergence time. Different design methods are proposed in the literature using adaptive gain, time variations, nonlinear functions, and intelligent methods like fuzzy logic (FL) and genetic algorithms (GA). In this study, five different sliding surface designs with analytical and intelligent methods are modified and applied to an IBVS system to expand these designs to visually guided robot manipulators. The design methods are selected by their convenience and applicability to these types of manipulator systems. To show the performance of the design methods, an IBVS system with six‐DOF manipulator is simulated using MATLAB Simulink, Robotics Toolbox, Machine Vision Toolbox, and Fuzzy Logic Toolbox. A comparison of these design methods according to convergence time, error cost function, defined parameters, and motion characteristics is given

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment

    Get PDF
    Multi-degrees of freedom (DOF) parallel robot, due to its compact structure and high operation accuracy, is a promising candidate for medical rehabilitation devices. However, its controllability relating to the nonlinear characteristics challenges its interaction with human subjects during the rehabilitation process. In this paper, we investigated the control of a parallel robot system using fuzzy sliding mode control (FSMC) for constructing a simple controller in practical rehabilitation, where a fuzzy logic system was used as the additional compensator to the sliding mode controller (SMC) for performance enhancement and chattering elimination. The system stability is guaranteed by the Lyapunov stability theorem. Experiments were conducted on a lower limb rehabilitation robot, which was built based on kinematics and dynamics analysis of the 6-DOF Stewart platform. The experimental results showed that the position tracking precision of the proposed FSMC is sufficient in practical applications, while the velocity chattering had been effectively reduced in comparison with the conventional FSMC with parameters tuned by fuzzy systems
    corecore