3,681 research outputs found

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Modeling and Analysis of Soft-Test/Repair for CCD-Based Digital X-Ray Systems

    Get PDF
    Modern X-ray imaging systems evolve toward digitization for reduced cost, faster time-to-diagnosis, and improved diagnostic confidence. For the digital X-ray systems, charge coupled device (CCD) technology is commonly used to detect and digitize optical X-ray image. This paper presents a novel soft-test/repair approach to overcome the defective pixel problem in CCD-based digital X-ray systems through theoretical modeling and analysis of the test/repair process. There are two possible solutions to cope with the defective pixel problem in CCDs: one is the hard-repair approach and another is the proposed soft-test/repair approach. Hard-repair approach employs a high-yield, expensive reparable CCD to minimize the impact of hard defects on the CCD, which occur in the form of noise propagated through A/D converter to the frame memory. Therefore, less work is needed to filter and correct the image at the end-user level while it maybe exceedingly expensive to practice. On the other hand, the proposed soft-test/repair approach is to detect and tolerate defective pixels at the digitized image level; thereby, it is inexpensive to practice and on-line repair can be done for noninterrupted service. It tests the images to detect the detective pixels and filter noise at the frame memory level and caches them in a flash memory in the controller for future repair. The controller cache keeps accumulating all the noise coordinates and preprocesses the incoming image data from the A/D converter by repairing them. The proposed soft-test/repair approach is particularly devised to facilitate hardware level implementation ultimately for real-time telediagnosis. Parametric simulation results demonstrate the speed and virtual yield enhancement by using the proposed approach; thereby highly reliable, yet inexpensive, soft-test/repair of CCD-based digital X-ray systems can be ultimately realized

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Design and implementation of the SBX1: a smart environment chamber for biological research and discovery

    Get PDF
    2021 Summer.Includes bibliographical references.Modern biomedical laboratories make significant use of environmentally controlled chambers for incubation and examination of live cell samples. They require precise control over temperature, humidity, and gas concentration to mimic natural conditions for cell survival and growth. Many incubators and live cell imaging systems exist as commercial products; however, they are prohibitively expensive, costing tens or hundreds of thousands of dollars depending on capabilities of the system. This thesis presents the electrical, optical, mechanical, and software design of the SBX1Smart Environment Chamber. This device aims to fulfill the needs of most users at a lower cost than current commercial offerings, providing an opportunity for less funded labs to pursue biomedical research and development. The chamber provides temperature, humidity, and gas concentration controls, an internal microscope with an automated stage, and an integrated ARM microcomputer to with a graphical user interface for control and monitoring of the system. A patent has been filed for the SBX1; application no. US 2020/0324289 A1

    Enhancing Real-time Embedded Image Processing Robustness on Reconfigurable Devices for Critical Applications

    Get PDF
    Nowadays, image processing is increasingly used in several application fields, such as biomedical, aerospace, or automotive. Within these fields, image processing is used to serve both non-critical and critical tasks. As example, in automotive, cameras are becoming key sensors in increasing car safety, driving assistance and driving comfort. They have been employed for infotainment (non-critical), as well as for some driver assistance tasks (critical), such as Forward Collision Avoidance, Intelligent Speed Control, or Pedestrian Detection. The complexity of these algorithms brings a challenge in real-time image processing systems, requiring high computing capacity, usually not available in processors for embedded systems. Hardware acceleration is therefore crucial, and devices such as Field Programmable Gate Arrays (FPGAs) best fit the growing demand of computational capabilities. These devices can assist embedded processors by significantly speeding-up computationally intensive software algorithms. Moreover, critical applications introduce strict requirements not only from the real-time constraints, but also from the device reliability and algorithm robustness points of view. Technology scaling is highlighting reliability problems related to aging phenomena, and to the increasing sensitivity of digital devices to external radiation events that can cause transient or even permanent faults. These faults can lead to wrong information processed or, in the worst case, to a dangerous system failure. In this context, the reconfigurable nature of FPGA devices can be exploited to increase the system reliability and robustness by leveraging Dynamic Partial Reconfiguration features. The research work presented in this thesis focuses on the development of techniques for implementing efficient and robust real-time embedded image processing hardware accelerators and systems for mission-critical applications. Three main challenges have been faced and will be discussed, along with proposed solutions, throughout the thesis: (i) achieving real-time performances, (ii) enhancing algorithm robustness, and (iii) increasing overall system's dependability. In order to ensure real-time performances, efficient FPGA-based hardware accelerators implementing selected image processing algorithms have been developed. Functionalities offered by the target technology, and algorithm's characteristics have been constantly taken into account while designing such accelerators, in order to efficiently tailor algorithm's operations to available hardware resources. On the other hand, the key idea for increasing image processing algorithms' robustness is to introduce self-adaptivity features at algorithm level, in order to maintain constant, or improve, the quality of results for a wide range of input conditions, that are not always fully predictable at design-time (e.g., noise level variations). This has been accomplished by measuring at run-time some characteristics of the input images, and then tuning the algorithm parameters based on such estimations. Dynamic reconfiguration features of modern reconfigurable FPGA have been extensively exploited in order to integrate run-time adaptivity into the designed hardware accelerators. Tools and methodologies have been also developed in order to increase the overall system dependability during reconfiguration processes, thus providing safe run-time adaptation mechanisms. In addition, taking into account the target technology and the environments in which the developed hardware accelerators and systems may be employed, dependability issues have been analyzed, leading to the development of a platform for quickly assessing the reliability and characterizing the behavior of hardware accelerators implemented on reconfigurable FPGAs when they are affected by such faults

    CMOS VLSI circuits for imaging

    Get PDF

    The architecture of a video image processor for the space station

    Get PDF
    The architecture of a video image processor for space station applications is described. The architecture was derived from a study of the requirements of algorithms that are necessary to produce the desired functionality of many of these applications. Architectural options were selected based on a simulation of the execution of these algorithms on various architectural organizations. A great deal of emphasis was placed on the ability of the system to evolve and grow over the lifetime of the space station. The result is a hierarchical parallel architecture that is characterized by high level language programmability, modularity, extensibility and can meet the required performance goals
    • …
    corecore