1,985 research outputs found

    Motor Drive Technologies for the Power-by-Wire (PBW) Program: Options, Trends and Tradeoffs

    Get PDF
    Power-By-Wire (PBW) is a program involving the replacement of hydraulic and pneumatic systems currently used in aircraft with an all-electric secondary power system. One of the largest loads of the all-electric secondary power system will be the motor loads which include pumps, compressors and Electrical Actuators (EA's). Issues of improved reliability, reduced maintenance and efficiency, among other advantages, are the motivation for replacing the existing aircraft actuators with electrical actuators. An EA system contains four major components. These are the motor, the power electronic converters, the actuator and the control system, including the sensors. This paper is a comparative literature review in motor drive technologies, with a focus on the trends and tradeoffs involved in the selection of a particular motor drive technology. The reported research comprises three motor drive technologies. These are the induction motor (IM), the brushless dc motor (BLDCM) and the switched reluctance motor (SRM). Each of the three drives has the potential for application in the PBW program. Many issues remain to be investigated and compared between the three motor drives, using actual mechanical loads expected in the PBW program

    State-of-art on permanent magnet brushless DC motor drives

    Get PDF
    Permanent magnet brushless DC (PMBLDC) motors are the latest choice of researchers due to their high efficiency, silent operation, compact size, high reliability and low maintenance requirements. These motors are preferred for numerous applications; however, most of them require sensorless control of these motors. The operation of PMBLDC motors requires rotor-position sensing for controlling the winding currents. The sensorless control would need estimation of rotor position from the voltage and current signals, which are easy to be sensed. This paper presents a state of art on PMBLDC motor drives with emphasis on sensorless control of these motors

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    To develop an efficient variable speed compressor motor system

    Get PDF
    This research presents a proposed new method of improving the energy efficiency of a Variable Speed Drive (VSD) for induction motors. The principles of VSD are reviewed with emphasis on the efficiency and power losses associated with the operation of the variable speed compressor motor drive, particularly at low speed operation.The efficiency of induction motor when operated at rated speed and load torque is high. However at low load operation, application of the induction motor at rated flux will cause the iron losses to increase excessively, hence its efficiency will reduce dramatically. To improve this efficiency, it is essential to obtain the flux level that minimizes the total motor losses. This technique is known as an efficiency or energy optimization control method. In practice, typical of the compressor load does not require high dynamic response, therefore improvement of the efficiency optimization control that is proposed in this research is based on scalar control model.In this research, development of a new neural network controller for efficiency optimization control is proposed. The controller is designed to generate both voltage and frequency reference signals imultaneously. To achieve a robust controller from variation of motor parameters, a real-time or on-line learning algorithm based on a second order optimization Levenberg-Marquardt is employed. The simulation of the proposed controller for variable speed compressor is presented. The results obtained clearly show that the efficiency at low speed is significant increased. Besides that the speed of the motor can be maintained. Furthermore, the controller is also robust to the motor parameters variation. The simulation results are also verified by experiment

    New Optimal High Efficiency Dsp-based Digital Controller Design For Super High-speed Permanent Magnet Synchronous Motor

    Get PDF
    This dissertation investigates digital controller and switch mode power supply design for super high-speed permanent magnet synchronous motors (PMSM). The PMSMs are a key component for the miniaturic cryocooler that is currently under development at the University of Central Florida with support from NASA Kennedy Space Center and the Florida Solar Energy Center. Advanced motor design methods, control strategies, and rapid progress in semiconductor technology enables production of a highly efficient digital controller. However, there are still challenges for such super high-speed controller design because of its stability, high-speed, variable speed operation, and required efficiency over a wide speed range. Currently, limited research, and no commercial experimental analysis, is available concerning such motors and their control system design. The stability of a super high-speed PMSM is an important issue particularly for open-loop control, given that PMSM are unstable after exceeding a certain applied frequency. In this dissertation, the stability of super high-speed PMSM is analyzed and some design suggestions are given to maximize this parameter. For ordinary motors, the V/f control curve is a straight line with a boost voltage because the stator resistance is negligible and only has a significant effect around the DC frequency. However, for the proposed super high-speed PMSM the situation is quite different because of the motor\u27s size. The stator resistance is quite large compared with the stator reactive impedance and cannot be neglected when employing constant a V/f control method. The challenge is to design an optimal constant V/f control scheme to raise efficiency with constant V/f control. In the development, test systems and prototype boards were built and experimental results confirmed the effectiveness of the dissertation system

    Implementation and Analysis of Direct Torque Control for Permanent Magnet Synchronous Motor Using Gallium Nitride based Inverter

    Get PDF
    Permanent magnet synchronous machines (PMSMs) attract considerable attention in various industrial applications, such as electric and hybrid electric vehicles, due to their high efficiency and high-power density. In this thesis, the mathematical model of PMSM and two popular control strategies, field-oriented control (FOC) and direct torque control (DTC), are analyzed and compared. The results demonstrated that the DTC has better dynamic response in comparison to FOC. Moreover, DTC can eliminate the use of position sensor, which will save the cost of the PMSM drive system. Therefore, this thesis focuses on the design and implementation of high-performance DTC for PMSMs with a Gallium Nitride (GaN) based high switching frequency motor drive. First, the characteristics and operation principles of a PMSM are introduced. Then, the mathematical models of a PMSM under different coordinate systems are investigated. Consequently, a PMSM model is developed based on the dq rotating reference frame and implemented in the MATLAB/Simulink for validation. Two advanced PMSM control strategies, FOC and DTC, are investigated and compared in terms of control performance through comprehensive simulation studies and the results demonstrate that DTC has better dynamic performance. Conventional DTC contributes to higher torque ripple in the PMSM due to the limited switching frequency in a conventional semiconductor-based motor drive, which inevitably deteriorates the drive performance. Therefore, this thesis aims to reduce the torque ripple in the DTC based PMSM drive by using the new generation wide bandgap switching devices. More specifically, DTC is improved by using the optimized space vector pulse width modulation strategy and a higher switching frequency contributed by the GaN based motor drive. Finally, the proposed DTC-SVM based PMSM control strategy is implemented on the digital signal processor (DSP) and evaluated on the laboratory GaN based PMSM drive. Both the simulation and experimental results show that the proposed improvement in the DTC can further improve the PMSM drive performance

    Analysis of coupled and decoupled PWM techniques for induction motor drive

    Get PDF
    Dual inverter fed induction motor drive-in open-end winding gives more advantages than multilevel inverter fed induction motor drives. For better quality of output voltage with low common mode voltage (CMV), in this paper analysis of coupled and decoupled PWM techniques for open end winding induction motor are carried. The analysis is carried in MATLAB/simulink environment for vector controlled open end winding induction motor drive. The performance of drive and PWM techniques are evaluated both in transient, steady state and loaded conditions

    Design definition of a mechanical capacitor

    Get PDF
    A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly
    corecore