53,171 research outputs found

    The hunt for submarines in classical art: mappings between scientific invention and artistic interpretation

    Get PDF
    This is a report to the AHRC's ICT in Arts and Humanities Research Programme. This report stems from a project which aimed to produce a series of mappings between advanced imaging information and communications technologies (ICT) and needs within visual arts research. A secondary aim was to demonstrate the feasibility of a structured approach to establishing such mappings. The project was carried out over 2006, from January to December, by the visual arts centre of the Arts and Humanities Data Service (AHDS Visual Arts).1 It was funded by the Arts and Humanities Research Council (AHRC) as one of the Strategy Projects run under the aegis of its ICT in Arts and Humanities Research programme. The programme, which runs from October 2003 until September 2008, aims ‘to develop, promote and monitor the AHRC’s ICT strategy, and to build capacity nation-wide in the use of ICT for arts and humanities research’.2 As part of this, the Strategy Projects were intended to contribute to the programme in two ways: knowledge-gathering projects would inform the programme’s Fundamental Strategic Review of ICT, conducted for the AHRC in the second half of 2006, focusing ‘on critical strategic issues such as e-science and peer-review of digital resources’. Resource-development projects would ‘build tools and resources of broad relevance across the range of the AHRC’s academic subject disciplines’.3 This project fell into the knowledge-gathering strand. The project ran under the leadership of Dr Mike Pringle, Director, AHDS Visual Arts, and the day-to-day management of Polly Christie, Projects Manager, AHDS Visual Arts. The research was carried out by Dr Rupert Shepherd

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    Multi-touch 3D Exploratory Analysis of Ocean Flow Models

    Get PDF
    Modern ocean flow simulations are generating increasingly complex, multi-layer 3D ocean flow models. However, most researchers are still using traditional 2D visualizations to visualize these models one slice at a time. Properly designed 3D visualization tools can be highly effective for revealing the complex, dynamic flow patterns and structures present in these models. However, the transition from visualizing ocean flow patterns in 2D to 3D presents many challenges, including occlusion and depth ambiguity. Further complications arise from the interaction methods required to navigate, explore, and interact with these 3D datasets. We present a system that employs a combination of stereoscopic rendering, to best reveal and illustrate 3D structures and patterns, and multi-touch interaction, to allow for natural and efficient navigation and manipulation within the 3D environment. Exploratory visual analysis is facilitated through the use of a highly-interactive toolset which leverages a smart particle system. Multi-touch gestures allow users to quickly position dye emitting tools within the 3D model. Finally, we illustrate the potential applications of our system through examples of real world significance

    A new method for interacting with multi-window applications on large, high resolution displays

    Get PDF
    Physically large display walls can now be constructed using off-the-shelf computer hardware. The high resolution of these displays (e.g., 50 million pixels) means that a large quantity of data can be presented to users, so the displays are well suited to visualization applications. However, current methods of interacting with display walls are somewhat time consuming. We have analyzed how users solve real visualization problems using three desktop applications (XmdvTool, Iris Explorer and Arc View), and used a new taxonomy to classify users’ actions and illustrate the deficiencies of current display wall interaction methods. Following this we designed a novel methodfor interacting with display walls, which aims to let users interact as quickly as when a visualization application is used on a desktop system. Informal feedback gathered from our working prototype shows that interaction is both fast and fluid

    Brain-wave measures of workload in advanced cockpits: The transition of technology from laboratory to cockpit simulator, phase 2

    Get PDF
    The present Phase 2 small business innovation research study was designed to address issues related to scalp-recorded event-related potential (ERP) indices of mental workload and to transition this technology from the laboratory to cockpit simulator environments for use as a systems engineering tool. The project involved five main tasks: (1) Two laboratory studies confirmed the generality of the ERP indices of workload obtained in the Phase 1 study and revealed two additional ERP components related to workload. (2) A task analysis' of flight scenarios and pilot tasks in the Advanced Concepts Flight Simulator (ACFS) defined cockpit events (i.e., displays, messages, alarms) that would be expected to elicit ERPs related to workload. (3) Software was developed to support ERP data analysis. An existing ARD-proprietary package of ERP data analysis routines was upgraded, new graphics routines were developed to enhance interactive data analysis, and routines were developed to compare alternative single-trial analysis techniques using simulated ERP data. (4) Working in conjunction with NASA Langley research scientists and simulator engineers, preparations were made for an ACFS validation study of ERP measures of workload. (5) A design specification was developed for a general purpose, computerized, workload assessment system that can function in simulators such as the ACFS

    A rapid prototyping/artificial intelligence approach to space station-era information management and access

    Get PDF
    Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced
    • 

    corecore