25 research outputs found

    ESTIMATION OF UNBALANCE COST DUE TO DEMAND PREDICTION ERRORS USING ARTIFICIAL NEURAL NETWORK

    Get PDF
    Estimation of energy demand is used as an important tool for decision makers determining company strategies and policies. Apart from this, the fact that the actual consumption differs from the forecast is harmful for the economy of the company and even for the economy of the big scale. In this study, it is aimed to estimate the imbalance aberration caused by demand forecast deviation with Artificial Neural Networks and to evaluate its results

    A Hierarchical Feature Extraction Model for Multi-Label Mechanical Patent Classification

    Get PDF
    Various studies have focused on feature extraction methods for automatic patent classification in recent years. However, most of these approaches are based on the knowledge from experts in related domains. Here we propose a hierarchical feature extraction model (HFEM) for multi-label mechanical patent classification, which is able to capture both local features of phrases as well as global and temporal semantics. First, a n-gram feature extractor based on convolutional neural networks (CNNs) is designed to extract salient local lexical-level features. Next, a long dependency feature extraction model based on the bidirectional long–short-term memory (BiLSTM) neural network model is proposed to capture sequential correlations from higher-level sequence representations. Then the HFEM algorithm and its hierarchical feature extraction architecture are detailed. We establish the training, validation and test datasets, containing 72,532, 18,133, and 2679 mechanical patent documents, respectively, and then check the performance of HFEMs. Finally, we compared the results of the proposed HFEM and three other single neural network models, namely CNN, long–short-term memory (LSTM), and BiLSTM. The experimental results indicate that our proposed HFEM outperforms the other compared models in both precision and recall

    Rumour verification through recurring information and an inner-attention mechanism

    Get PDF
    Verification of online rumours is becoming an increasingly important task with the prevalence of event discussions on social media platforms. This paper proposes an inner-attention-based neural network model that uses frequent, recurring terms from past rumours to classify a newly emerging rumour as true, false or unverified. Unlike other methods proposed in related work, our model uses the source rumour alone without any additional information, such as user replies to the rumour or additional feature engineering. Our method outperforms the current state-of-the-art methods on benchmark datasets (RumourEval2017) by 3% accuracy and 6% F-1 leading to 60.7% accuracy and 61.6% F-1. We also compare our attention-based method to two similar models which however do not make use of recurrent terms. The attention-based method guided by frequent recurring terms outperforms this baseline on the same dataset, indicating that the recurring terms injected by the attention mechanism have high positive impact on distinguishing between true and false rumours. Furthermore, we perform out-of-domain evaluations and show that our model is indeed highly competitive compared to the baselines on a newly released RumourEval2019 dataset and also achieves the best performance on classifying fake and legitimate news headlines

    Scalable large margin pairwise learning algorithms

    Get PDF
    2019 Summer.Includes bibliographical references.Classification is a major task in machine learning and data mining applications. Many of these applications involve building a classification model using a large volume of imbalanced data. In such an imbalanced learning scenario, the area under the ROC curve (AUC) has proven to be a reliable performance measure to evaluate a classifier. Therefore, it is desirable to develop scalable learning algorithms that maximize the AUC metric directly. The kernelized AUC maximization machines have established a superior generalization ability compared to linear AUC machines. However, the computational cost of the kernelized machines hinders their scalability. To address this problem, we propose a large-scale nonlinear AUC maximization algorithm that learns a batch linear classifier on approximate feature space computed via the k-means Nyström method. The proposed algorithm is shown empirically to achieve comparable AUC classification performance or even better than the kernel AUC machines, while its training time is faster by several orders of magnitude. However, the computational complexity of the linear batch model compromises its scalability when training sizable datasets. Hence, we develop a second-order online AUC maximization algorithms based on a confidence-weighted model. The proposed algorithms exploit the second-order information to improve the convergence rate and implement a fixed-size buffer to address the multivariate nature of the AUC objective function. We also extend our online linear algorithms to consider an approximate feature map constructed using random Fourier features in an online setting. The results show that our proposed algorithms outperform or are at least comparable to the competing online AUC maximization methods. Despite their scalability, we notice that online first and second-order AUC maximization methods are prone to suboptimal convergence. This can be attributed to the limitation of the hypothesis space. A potential improvement can be attained by learning stochastic online variants. However, the vanilla stochastic methods also suffer from slow convergence because of the high variance introduced by the stochastic process. We address the problem of slow convergence by developing a fast convergence stochastic AUC maximization algorithm. The proposed stochastic algorithm is accelerated using a unique combination of scheduled regularization update and scheduled averaging. The experimental results show that the proposed algorithm performs better than the state-of-the-art online and stochastic AUC maximization methods in terms of AUC classification accuracy. Moreover, we develop a proximal variant of our accelerated stochastic AUC maximization algorithm. The proposed method applies the proximal operator to the hinge loss function. Therefore, it evaluates the gradient of the loss function at the approximated weight vector. Experiments on several benchmark datasets show that our proximal algorithm converges to the optimal solution faster than the previous AUC maximization algorithms

    Exploring attributes, sequences, and time in Recommender Systems: From classical to Point-of-Interest recommendation

    Full text link
    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingenieria Informática. Fecha de lectura: 08-07-2021Since the emergence of the Internet and the spread of digital communications throughout the world, the amount of data stored on the Web has been growing exponentially. In this new digital era, a large number of companies have emerged with the purpose of ltering the information available on the web and provide users with interesting items. The algorithms and models used to recommend these items are called Recommender Systems. These systems are applied to a large number of domains, from music, books, or movies to dating or Point-of-Interest (POI), which is an increasingly popular domain where users receive recommendations of di erent places when they arrive to a city. In this thesis, we focus on exploiting the use of contextual information, especially temporal and sequential data, and apply it in novel ways in both traditional and Point-of-Interest recommendation. We believe that this type of information can be used not only for creating new recommendation models but also for developing new metrics for analyzing the quality of these recommendations. In one of our rst contributions we propose di erent metrics, some of them derived from previously existing frameworks, using this contextual information. Besides, we also propose an intuitive algorithm that is able to provide recommendations to a target user by exploiting the last common interactions with other similar users of the system. At the same time, we conduct a comprehensive review of the algorithms that have been proposed in the area of POI recommendation between 2011 and 2019, identifying the common characteristics and methodologies used. Once this classi cation of the algorithms proposed to date is completed, we design a mechanism to recommend complete routes (not only independent POIs) to users, making use of reranking techniques. In addition, due to the great di culty of making recommendations in the POI domain, we propose the use of data aggregation techniques to use information from di erent cities to generate POI recommendations in a given target city. In the experimental work we present our approaches on di erent datasets belonging to both classical and POI recommendation. The results obtained in these experiments con rm the usefulness of our recommendation proposals, in terms of ranking accuracy and other dimensions like novelty, diversity, and coverage, and the appropriateness of our metrics for analyzing temporal information and biases in the recommendations producedDesde la aparici on de Internet y la difusi on de las redes de comunicaciones en todo el mundo, la cantidad de datos almacenados en la red ha crecido exponencialmente. En esta nueva era digital, han surgido un gran n umero de empresas con el objetivo de ltrar la informaci on disponible en la red y ofrecer a los usuarios art culos interesantes. Los algoritmos y modelos utilizados para recomendar estos art culos reciben el nombre de Sistemas de Recomendaci on. Estos sistemas se aplican a un gran n umero de dominios, desde m usica, libros o pel culas hasta las citas o los Puntos de Inter es (POIs, en ingl es), un dominio cada vez m as popular en el que los usuarios reciben recomendaciones de diferentes lugares cuando llegan a una ciudad. En esta tesis, nos centramos en explotar el uso de la informaci on contextual, especialmente los datos temporales y secuenciales, y aplicarla de forma novedosa tanto en la recomendaci on cl asica como en la recomendaci on de POIs. Creemos que este tipo de informaci on puede utilizarse no s olo para crear nuevos modelos de recomendaci on, sino tambi en para desarrollar nuevas m etricas para analizar la calidad de estas recomendaciones. En una de nuestras primeras contribuciones proponemos diferentes m etricas, algunas derivadas de formulaciones previamente existentes, utilizando esta informaci on contextual. Adem as, proponemos un algoritmo intuitivo que es capaz de proporcionar recomendaciones a un usuario objetivo explotando las ultimas interacciones comunes con otros usuarios similares del sistema. Al mismo tiempo, realizamos una revisi on exhaustiva de los algoritmos que se han propuesto en el a mbito de la recomendaci o n de POIs entre 2011 y 2019, identi cando las caracter sticas comunes y las metodolog as utilizadas. Una vez realizada esta clasi caci on de los algoritmos propuestos hasta la fecha, dise~namos un mecanismo para recomendar rutas completas (no s olo POIs independientes) a los usuarios, haciendo uso de t ecnicas de reranking. Adem as, debido a la gran di cultad de realizar recomendaciones en el ambito de los POIs, proponemos el uso de t ecnicas de agregaci on de datos para utilizar la informaci on de diferentes ciudades y generar recomendaciones de POIs en una determinada ciudad objetivo. En el trabajo experimental presentamos nuestros m etodos en diferentes conjuntos de datos tanto de recomendaci on cl asica como de POIs. Los resultados obtenidos en estos experimentos con rman la utilidad de nuestras propuestas de recomendaci on en t erminos de precisi on de ranking y de otras dimensiones como la novedad, la diversidad y la cobertura, y c omo de apropiadas son nuestras m etricas para analizar la informaci on temporal y los sesgos en las recomendaciones producida

    24th Nordic Conference on Computational Linguistics (NoDaLiDa)

    Get PDF
    corecore