151,462 research outputs found

    Advanced concepts for intelligent vision systems

    Get PDF

    Advanced concepts for intelligent vision systems, 19th international conference, ACIVS 2018, proceedings

    Get PDF
    International audienceThis book constitutes the refereed proceedings of the 19th International Conference on Advanced Concepts for Intelligent Vision Systems, ACIVS 2018, held in Poitiers, France, in September 2018. The 52 full papers presented in this volume were carefully reviewed and selected from 91 submissions. They were organized in topical sections named: video analysis; segmentation and classification; remote sending; biometrics; deep learning; coding and compression; and image restauration and reconstruction

    Paper Session II-C - The NASA Intelligent Synthesis Environment Advanced Learning Systems Initiative

    Get PDF
    The NASA Intelligent Synthesis Environment Program vision is to research, develop, acquire, validate, demonstrate and implement revolutionary engineering and science tools and processes for the design, development and execution of NASA’s missions in a collaborative and distributed fashion. The Cultural Infusion Element of the ISE Program intends to help bridge the gap between tools, methodologies and systems by developing training approaches and learning environments to fully utilize collaborative capabilities produced by ISE. This effort to bridge the gap will include both “pushing” the advanced learning systems into the Agency to enable program and project managers and employees to use the tools as well as foster the continual learning organization within NASA and “pulling” academia forward to an advanced learning systems capability within academia. Creating effective environments for life-long learning by engineering professionals is essential for the long-term viability of the aerospace industry. This paper will present the overarching objectives of the Advanced Learning System and present a description of the concepts NASA ISE has developed and plans to develop in the future

    Network of automated vehicles: the AutoNet 2030 vision

    Get PDF
    electronic proceedingsInternational audienceAutoNet2030 - Co-operative Systems in Support of Networked Automated Driving by 2030 - is a European project connecting two domains of intensive research: cooperative systems for Intelligent Transportation Systems and Automated Driving. Given the latest developments in the standardization of vehicular communications, vehicles will soon be wirelessly connected, enabling cooperation among them and with the infrastructure. At the same time, some vehicles will offer very advanced driving assistance systems, ranging from Cooperative Adaptive Cruise Control (C-ACC) to full automation. The research issues addressed in AutoNet2030 are as follows: how can all these vehicles with different capabilities most efficiently cooperate to increase safety and fluidity of the traffic system? What kind of information should be exchanged? Which organization (e.g. centralized or distributed) is the best? The purpose of this paper is to introduce the vision and concepts underlying the AutoNet2030 project and the direction of this ongoing research work

    A bio-inspired image coder with temporal scalability

    Full text link
    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalian retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, our decoded images do not show annoying artefacts such as ringing and block effects. As a whole, this article shows how to capture the main properties of a biological system, here the retina, in order to design a new efficient coder.Comment: 12 pages; Advanced Concepts for Intelligent Vision Systems (ACIVS 2011

    On Advanced Mobility Concepts for Intelligent Planetary Surface Exploration

    Get PDF
    Surface exploration by wheeled rovers on Earth's Moon (the two Lunokhods) and Mars (Nasa's Sojourner and the two MERs) have been followed since many years already very suc-cessfully, specifically concerning operations over long time. However, despite of this success, the explored surface area was very small, having in mind a total driving distance of about 8 km (Spirit) and 21 km (Opportunity) over 6 years of operation. Moreover, ESA will send its ExoMars rover in 2018 to Mars, and NASA its MSL rover probably this year. However, all these rovers are lacking sufficient on-board intelligence in order to overcome longer dis-tances, driving much faster and deciding autonomously on path planning for the best trajec-tory to follow. In order to increase the scientific output of a rover mission it seems very nec-essary to explore much larger surface areas reliably in much less time. This is the main driver for a robotics institute to combine mechatronics functionalities to develop an intelligent mo-bile wheeled rover with four or six wheels, and having specific kinematics and locomotion suspension depending on the operational terrain of the rover to operate. DLR's Robotics and Mechatronics Center has a long tradition in developing advanced components in the field of light-weight motion actuation, intelligent and soft manipulation and skilled hands and tools, perception and cognition, and in increasing the autonomy of any kind of mechatronic systems. The whole design is supported and is based upon detailed modeling, optimization, and simula-tion tasks. We have developed efficient software tools to simulate the rover driveability per-formance on various terrain characteristics such as soft sandy and hard rocky terrains as well as on inclined planes, where wheel and grouser geometry plays a dominant role. Moreover, rover optimization is performed to support the best engineering intuitions, that will optimize structural and geometric parameters, compare various kinematics suspension concepts, and make use of realistic cost functions like mass and consumed energy minimization, static sta-bility, and more. For self-localization and safe navigation through unknown terrain we make use of fast 3D stereo algorithms that were successfully used e.g. in unmanned air vehicle ap-plications and on terrestrial mobile systems. The advanced rover design approach is applica-ble for lunar as well as Martian surface exploration purposes. A first mobility concept ap-proach for a lunar vehicle will be presented
    • …
    corecore