419 research outputs found

    Hybrid Filter Scheme for Optimizing Indoor Mobile Cooperative Tracking System

    Get PDF
    The precise indoor tracking system using Xbee signal strength protocol has become a potential research to the WSN applications. The main aspects for the success tracking system is accuracy performance based on location estimation. The improvement of location estimation is complicated issue, especially using RSSI with low accuracy due to the signal attenuation from multipath effect at indoor propagation. Hence, many existing research typically focused on specific methods for providing improvement schemes at tracking system area. Then, we propose hybrid filter schemes, including extended gradient filter (EGF) for filtering noise signal based distance modification, and modified extended Kalman filter (MIEKF) will be combined with trilateration for filtering the error position estimation. Using mobile cooperative tracking scenario refers to our previous work, the proposed hybrid filter scheme which is called modified iterated extended gradient Kalman filter (MIEGKF) can optimize the error estimation around 41.28% reduction with 0.63 meters MSE (mean square error) value

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Wireless Sensor Networks for Underwater Localization: A Survey

    Get PDF
    Autonomous Underwater Vehicles (AUVs) have widely deployed in marine investigation and ocean exploration in recent years. As the fundamental information, their position information is not only for data validity but also for many real-world applications. Therefore, it is critical for the AUV to have the underwater localization capability. This report is mainly devoted to outline the recent advance- ment of Wireless Sensor Networks (WSN) based underwater localization. Several classic architectures designed for Underwater Acoustic Sensor Network (UASN) are brie y introduced. Acoustic propa- gation and channel models are described and several ranging techniques are then explained. Many state-of-the-art underwater localization algorithms are introduced, followed by the outline of some existing underwater localization systems

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    AN ENERGY EFFICIENT CROSS-LAYER NETWORK OPERATION MODEL FOR MOBILE WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are modern technologies used to sense/control the environment whether indoors or outdoors. Sensor nodes are miniatures that can sense a specific event according to the end user(s) needs. The types of applications where such technology can be utilised and implemented are vast and range from households’ low end simple need applications to high end military based applications. WSNs are resource limited. Sensor nodes are expected to work on a limited source of power (e.g., batteries). The connectivity quality and reliability of the nodes is dependent on the quality of the hardware which the nodes are made of. Sensor nodes are envisioned to be either stationary or mobile. Mobility increases the issues of the quality of the operation of the network because it effects directly on the quality of the connections between the nodes

    Distributed on-line multidimensional scaling for self-localization in wireless sensor networks

    Full text link
    The present work considers the localization problem in wireless sensor networks formed by fixed nodes. Each node seeks to estimate its own position based on noisy measurements of the relative distance to other nodes. In a centralized batch mode, positions can be retrieved (up to a rigid transformation) by applying Principal Component Analysis (PCA) on a so-called similarity matrix built from the relative distances. In this paper, we propose a distributed on-line algorithm allowing each node to estimate its own position based on limited exchange of information in the network. Our framework encompasses the case of sporadic measurements and random link failures. We prove the consistency of our algorithm in the case of fixed sensors. Finally, we provide numerical and experimental results from both simulated and real data. Simulations issued to real data are conducted on a wireless sensor network testbed.Comment: 32 pages, 5 figures, 1 tabl

    A New Set of Wi-Fi Dynamic Line-Based Localization Algorithms for Indoor Environments

    Get PDF
    Localization is of great importance for several fields such as healthcare and security. To achieve localization, GPS technologies are common for outdoor localization but are insufficient for indoor localization. This is because the accuracy and precision of the users’ indoor locations are influenced by many factors (e.g., multipath signal propagations). As a result, the methodologies and technologies for indoor localization services need to remain continuously under development. A related challenge is the time complexity of the methodologies which impacts the performance of the mobile phones’ limited resources. To address these challenges, a new set of fingerprinting algorithms called Fingerprinting Line-Based Nearest Neighbor (FLBNN) is proposed. Furthermore, the new set is compared to other existing Nearest Neighbor-based algorithms. When the deployment of four access points is considered, the FLBNN algorithms outperform several algorithms in terms of accuracy such as Nearest Neighbor version 2, Nearest Neighbor version 4, and Soft-Range-Limited KNN by approximately 17.1%, 7.8%, and 24.1%; respectively. With regards to precision, the new set of algorithms outperforms Path-Loss-Based Fingerprint Localization (PFL) and Dual-Scanned Fingerprint Localization (DFL) by approximately 7.0% and 60.9%; respectively. Moreover, the FLBNN algorithms have a time complexity of O(t * p) where the term t is the number of deployed centroids and the term p is the number of Path Loss exponents. In addition, the new set of algorithms achieves faster run time compared to those for PFL and DFL. As a result, this Thesis improves the cost and reliability of the indoor location services
    • …
    corecore