1,408 research outputs found

    Diffusion-free valve for preprogrammed immunoassay with capillary microfluidics

    Get PDF
    By manipulating the geometry and surface chemistry of microfluidic channels, capillary-driven microfluidics can move and stop fluids spontaneously without external instrumentation. Furthermore, complex microfluidic circuits can be preprogrammed by synchronizing the capillary pressures and encoding the surface tensions of microfluidic chips. A key component of these systems is the capillary valve. However, the main concern for these valves is the presence of unwanted diffusion during the valve loading and activation steps that can cause cross-contamination. In this study, we design and validate a novel diffusion-free capillary valve: the p-valve. This valve consists of a 3D structure and a void area. The void acts as a spacer between two fluids to avoid direct contact. When the valve is triggered, the air trapped within the void is displaced by pneumatic suction induced from the capillary flow downstream without introducing a gas bubble into the circuit. The proposed design eliminates diffusive mixing before valve activation. Numerical simulation is used to study the function and optimize the dimensions of the p-valve, and 3D printing is used to fabricate either the mould or the microfluidic chip. A comparison with a conventional valve (based on a constriction- expansion valve) demonstrates that the p-valve eliminates possible backflow into the valve and reduces the mixing and diffusion during the loading and trigger steps. As a proof-of-concept, this valve is successfully implemented in a capillary-driven circuit for the determination of benzodiazepine, achieving the successive release of 3 solutions in a 3D- printed microfluidic chip without external instrumentation. The results show a 40% increase in the fluorescence intensity using the p-valve relative to the conventional value. Overall, the p-valve prevents cross-contamination, minimizes sample use, and facilitates a sophisticated preprogrammed release of fluids, offering a promising tool for conducting automated immunoassays applicable at point-of-care testing.Peer ReviewedPostprint (published version

    Capillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices

    Get PDF
    Over decades, decentralized diagnostics continues to move towards rapid and cost-effective testing at the point-of-care (POC). Although microfluidics has become a key enabling technology for POC testing, the need for robust peripheral equipment has been a key limiting factor in reaching an ideal device. Manufacturing technologies are now reaching a level of maturity that allows the definition of 3D features down to the sub-millimeter scale. Employing three-dimensional (3D) features and surface chemistry allows the possibility to pre-program sophisticated control of the capillary flow avoiding bulky peripheral equipment. By designing a sequence of steps, like elution of reagents, washing, mixing, and sensing, capillary valves have become a powerful tool for POC applications. These valves use capillary force to stop and then release flows within pre-programmed capillary circuits without any moving part. Without their 3D structure, the feasibility of creating pre-programmed bioanalytical devices would be nearly impossible. Besides, the advent of smart materials and their variety of surface properties permitted the unprecedented ability to fabricate reliable flow control with a range of capillary driving forces. The classification of such capillary elements is presented in two functional steps – stop and actuation. This review includes the advances in 3D microfabrication, design, and surface chemistry for manufacturing bioanalytical devices. These developments are critically reviewed, focusing on the process and considering phenomena such as timing, reproducibility, unwanted diffusion, and cross-contaminations.This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 813863Peer ReviewedPostprint (published version

    System Integration - A Major Step toward Lab on a Chip

    Get PDF
    Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications

    Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery

    Get PDF
    Microfluidics is an emerging and promising interdisciplinary technology which offers powerful platforms for precise production of novel functional materials (e.g., emulsion droplets, microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase microfluidics is a rapidly growing technology and has beneficial applications in various fields including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals and latest developments in multiphase microfluidics for producing biocompatible materials that are precisely controlled in size, shape, internal morphology and composition. We next describe some microfluidic applications that synthesize drug molecules, handle biological substances and biological units, and imitate biological organs. We also highlight and discuss design, applications and scale up of droplet- and flow-based microfluidic devices used for drug discovery and delivery. © 2013 Elsevier B.V. All rights reserved

    Microfabrication and Applications of Opto-Microfluidic Sensors

    Get PDF
    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost

    Basic capillary microfluidic chip and highly sensitive optical detector for point of care application

    Get PDF
    A cost-effective and highly sensitive portable diagnostic device is needed to enable much more widespread monitoring of health conditions in disease prevention, detection, and control. Miniaturized and easy-to-operate devices can reduce the inherent costs and inefficiencies associated with healthcare testing in central laboratories. Hence, clinicians are beginning to use point of care (POC) testing and flexible clinical chemistry testing devices which are beneficial for the patient. In our work, a low-cost and simple autonomous microfluidic device for biochemical detection was developed. The pumpless capillary system with capillary stop valves and trigger valves is fabricated on a silicon (Si) wafer and then bonded with the modified polydimethylsiloxane (PDMS) cover. The key point of this study is the change of the surface contact angle of the PDMS to achieve the functionalities such as timing features (capillary-driven stop valve) and basic logical functions (trigger valves). The polydimethylsiloxane-ethylene oxide polymer (PDMS-b-PEO) is utilized as a surfactant additive to make the PDMS hydrophilic. The contact angle of the modified PDMS can be adjusted from 80.9° to 21.5° with different mixing ratios. The contact angles of PEO-PDMS accepted in this work are from 80.9° to 58.5° to bring the capillary channel and valve into effect. This autonomous capillary-driven device with good microfluidic flow manipulation can be widely applied to a number of microfluidic devices and pumpless fluidic actuation mechanisms, which is suitable for cost-effective diagnostic tools in the biomedical analysis and POC testing applications. Another obstacle for miniaturization of the bio-detection system is the optical detector. We developed a novel, highly sensitive and miniaturized detector. It integrates a light source--light emitting diode (LED), all necessary optical components, and a photodiode with preamplifier into one package about 2 cm x 2 cm x 2 cm, especially for the applications of lab-on-a-chip (LOC), portable bio-detection system and POC diagnostic system. The size of this detector is smaller than the existing miniaturized detector of the size 5 cm x 5 cm x 5 cm. The fluorescence dye 5-Carboxyfluorescein (5-FAM) dissolved into the solvent DMSO (Dimethyl Sulfoxide) and diluted with DI water was used as the testing solution samples. The prototype has been tested to prove a remarkable sensitivity at pico-scale molar, around 1.08 pM, which is the highest sensitivity by now. It is higher than the current limit of detection at 1.96 nm, which will be presented in detail in the latter section
    corecore