12,514 research outputs found

    Attack-Surface Metrics, OSSTMM and Common Criteria Based Approach to “Composable Security” in Complex Systems

    Get PDF
    In recent studies on Complex Systems and Systems-of-Systems theory, a huge effort has been put to cope with behavioral problems, i.e. the possibility of controlling a desired overall or end-to-end behavior by acting on the individual elements that constitute the system itself. This problem is particularly important in the “SMART” environments, where the huge number of devices, their significant computational capabilities as well as their tight interconnection produce a complex architecture for which it is difficult to predict (and control) a desired behavior; furthermore, if the scenario is allowed to dynamically evolve through the modification of both topology and subsystems composition, then the control problem becomes a real challenge. In this perspective, the purpose of this paper is to cope with a specific class of control problems in complex systems, the “composability of security functionalities”, recently introduced by the European Funded research through the pSHIELD and nSHIELD projects (ARTEMIS-JU programme). In a nutshell, the objective of this research is to define a control framework that, given a target security level for a specific application scenario, is able to i) discover the system elements, ii) quantify the security level of each element as well as its contribution to the security of the overall system, and iii) compute the control action to be applied on such elements to reach the security target. The main innovations proposed by the authors are: i) the definition of a comprehensive methodology to quantify the security of a generic system independently from the technology and the environment and ii) the integration of the derived metrics into a closed-loop scheme that allows real-time control of the system. The solution described in this work moves from the proof-of-concepts performed in the early phase of the pSHIELD research and enrich es it through an innovative metric with a sound foundation, able to potentially cope with any kind of pplication scenarios (railways, automotive, manufacturing, ...)

    Performance Evaluation of v-eNodeB using Virtualized Radio Resource Management

    Get PDF
    With the demand upsurge for high bandwidth services, continuous increase in the number of cellular subscriptions, adoption of Internet of Things (IoT), and marked growth in Machine-to-Machine (M2M) traffic, there is great stress exerted on cellular network infrastructure. The present wireline and wireless networking technologies are rigid in nature and heavily hardware-dependent, as a result of which the process of infrastructure upgrade to keep up with future demand is cumbersome and expensive. Software-defined networks (SDN) hold the promise to decrease network rigidity by providing central control and flow abstraction, which in current network setups are hardware-based. The embrace of SDN in traditional cellular networks has led to the implementation of vital network functions in the form of software that are deployed in virtualized environments. This approach to move crucial and hardware intensive network functions to virtual environments is collectively referred to as network function virtualization (NFV). Our work evaluates the cost reduction and energy savings that can be achieved by the application of SDN and NFV technologies in cellular networks. In this thesis, we implement a virtualized eNodeB component (Radio Resource Management) to add agility to the network setup and improve performance, which we compare with a traditional resource manager. When combined with dynamic network resource allocation techniques proposed in Elastic Handoff, our hardware agnostic approach can achieve a greater reduction in capital and operational expenses through optimal use of network resources and efficient energy utilization. Advisor: Jitender S. Deogu

    Opportunistic Spectrum Access in Cognitive Radio Network

    Get PDF

    Congestion control in multi-serviced heterogeneous wireless networks using dynamic pricing

    Get PDF
    Includes bibliographical references.Service providers, (or operators) employ pricing schemes to help provide desired QoS to subscribers and to maintain profitability among competitors. An economically efficient pricing scheme, which will seamlessly integrate users’ preferences as well as service providers’ preferences, is therefore needed. Else, pricing schemes can be viewed as promoting social unfairness in the dynamically priced network. However, earlier investigations have shown that the existing dynamic pricing schemes do not consider the users’ willingness to pay (WTP) before the price of services is determined. WTP is the amount a user is willing to pay based on the worth attached to the service requested. There are different WTP levels for different subscribers due to the differences in the value attached to the services requested and demographics. This research has addressed congestion control in the heterogeneous wireless network (HWN) by developing a dynamic pricing scheme that efficiently incentivises users to utilize radio resources. The proposed Collaborative Dynamic Pricing Scheme (CDPS), which identifies the users and operators’ preference in determining the price of services, uses an intelligent approach for controlling congestion and enhancing both the users’ and operators’ utility. Thus, the CDPS addresses the congestion problem by firstly obtaining the users WTP from users’ historical response to price changes and incorporating the WTP factor to evaluate the service price. Secondly, it uses a reinforcement learning technique to illustrate how a price policy can be obtained for the enhancement of both users and operators’ utility, as total utility reward obtained increases towards a defined ‘goal state’

    Quality of Service Provisioning for Heterogeneous Services in Cognitive Radio-enabled Internet of Things

    Get PDF
    IEEE The Internet of Things (IoT) is a network of interconnected objects, in which every object in the world seeks to communicate and exchange information actively. This exponential growth of interconnected objects increases the demand for wireless spectrum. However, providing wireless channel access to every communicating object while ensuring its guaranteed quality of service (QoS) requirements is challenging and has not yet been explored, especially for IoT-enabled mission-critical applications and services. Meanwhile, Cognitive Radio-enabled Internet of Things (CR-IoT) is an emerging field that is considered the future of IoT. The combination of CR technology and IoT can better handle the increasing demands of various applications such as manufacturing, logistics, retail, environment, public safety, healthcare, food, and drugs. However, due to the limited and dynamic resource availability, CR-IoT cannot accommodate all types of users. In this paper, we first examine the availability of a licensed channel on the basis of its primary users' activities (e.g., traffic patterns). Second, we propose a priority-based secondary user (SU) call admission and channel allocation scheme, which is further based on a priority-based dynamic channel reservation scheme. The objective of our study is to reduce the blocking probability of higher-priority SU calls while maintaining a sufficient level of channel utilization. The arrival rates of SU calls of all priority classes are estimated using a Markov chain model, and further channels for each priority class are reserved based on this analysis. We compare the performance of the proposed scheme with the greedy non-priority and fair proportion schemes in terms of the SU call-blocking probability, SU call-dropping probability, channel utilization, and throughput. Numerical results show that the proposed priority scheme outperforms the greedy non-priority and fair proportion schemes
    • 

    corecore