1,865 research outputs found

    Stability and Performance Improvement in Haptic Human-Robot Interaction

    Get PDF
    The goal of this research is to develop theories, methods, and tools to understand the mechanisms of neuromotor adaptation in human-robot physical interaction, in order to improve the stability and performance of the interaction. Human power-assisting systems (e.g., powered lifting devices that aid human operators in manipulating heavy or bulky loads) require physical contact between the operator and machine, creating a coupled dynamic system. This dynamic coupling has been shown to introduce inherent instabilities and performance degradation due to a change in human stiffness; when instability is encountered, a human operator often attempts to control the oscillation by stiffening their arm, which leads to a stiffer system with more instability. Robot co-worker controllers must account for this issue. In this work we set out to 1) understand the association between neuromuscular adaptations and system performance limits, 2) develop probabilistic methods to classify and predict the transition of operator’s cognitive and physical states from physiological measures, and 3) integrate this knowledge into a structure of shared human-robot control. We developed a model of the human operator endpoint stiffness, characterized at the musculoskeletal level, that can account for deliberate stiffness increase at the endpoint through the incorporation of muscle coactivation. We also developed a switching admittance control approach which can account for changes in the operator’s muscle coactivation and is able to generate cognitive states in an unsupervised manner, given a relevant training dataset. Finally, a novel variable admittance control approach, which significantly reduces grasp contact instability commonly encountered in fixed admittance control settings, was developed, analytically derived, and provides solutions for both constant mass and variable mass parameter cases.Ph.D

    Adaptive shared control system

    Get PDF

    Force-based control for human-robot cooperative object manipulation

    Get PDF
    In Physical Human-Robot Interaction (PHRI), humans and robots share the workspace and physically interact and collaborate to perform a common task. However, robots do not have human levels of intelligence or the capacity to adapt in performing collaborative tasks. Moreover, the presence of humans in the vicinity of the robot requires ensuring their safety, both in terms of software and hardware. One of the aspects related to safety is the stability of the human-robot control system, which can be placed in jeopardy due to several factors such as internal time delays. Another aspect is the mutual understanding between humans and robots to prevent conflicts in performing a task. The kinesthetic transmission of the human intention is, in general, ambiguous when an object is involved, and the robot cannot distinguish the human intention to rotate from the intention to translate (the translation/rotation problem).This thesis examines the aforementioned issues related to PHRI. First, the instability arising due to a time delay is addressed. For this purpose, the time delay in the system is modeled with the exponential function, and the effect of system parameters on the stability of the interaction is examined analytically. The proposed method is compared with the state-of-the-art criteria used to study the stability of PHRI systems with similar setups and high human stiffness. Second, the unknown human grasp position is estimated by exploiting the interaction forces measured by a force/torque sensor at the robot end effector. To address cases where the human interaction torque is non-zero, the unknown parameter vector is augmented to include the human-applied torque. The proposed method is also compared via experimental studies with the conventional method, which assumes a contact point (i.e., that human torque is equal to zero). Finally, the translation/rotation problem in shared object manipulation is tackled by proposing and developing a new control scheme based on the identification of the ongoing task and the adaptation of the robot\u27s role, i.e., whether it is a passive follower or an active assistant. This scheme allows the human to transport the object independently in all degrees of freedom and also reduces human effort, which is an important factor in PHRI, especially for repetitive tasks. Simulation and experimental results clearly demonstrate that the force required to be applied by the human is significantly reduced once the task is identified

    A passivity-based strategy for manual corrections in human-robot coaching

    Get PDF
    In recent years, new programming techniques have been developed in the human-robot collaboration (HRC) field. For example, walk-through programming allows to program the robot in an easy and intuitive way. In this context, a modification of a portion of the trajectory usually requires the teaching of the path from the beginning. In this paper we propose a passivity-based method to locally change a trajectory based on a manual human correction. At the beginning the robot follows the nominal trajectory, encoded through the Dynamical Movement Primitives, by setting high control gains. When the human grasps the end-effector, the robot is made compliant and he/she can drive it along the correction. The correction is optimally joined to the nominal trajectory, resuming the path tracking. In order to avoid unstable behaviors, the variation of the control gains is performed exploiting energy tanks, preserving the passivity of the interaction. Finally, the correction is spatially fixed so that a variation in the boundary conditions (e.g., the initial/final points) does not affect the modification

    An Integrated Decision Making Approach for Adaptive Shared Control of Mobility Assistance Robots

    Get PDF
    © 2016, Springer Science+Business Media Dordrecht. Mobility assistance robots provide support to elderly or patients during walking. The design of a safe and intuitive assistance behavior is one of the major challenges in this context. We present an integrated approach for the context-specific, on-line adaptation of the assistance level of a rollator-type mobility assistance robot by gain-scheduling of low-level robot control parameters. A human-inspired decision-making model, the drift-diffusion Model, is introduced as the key principle to gain-schedule parameters and with this to adapt the provided robot assistance in order to achieve a human-like assistive behavior. The mobility assistance robot is designed to provide (a) cognitive assistance to help the user following a desired path towards a predefined destination as well as (b) sensorial assistance to avoid collisions with obstacles while allowing for an intentional approach of them. Further, the robot observes the user long-term performance and fatigue to adapt the overall level of (c) physical assistance provided. For each type of assistance a decision-making problem is formulated that affects different low-level control parameters. The effectiveness of the proposed approach is demonstrated in technical validation experiments. Moreover, the proposed approach is evaluated in a user study with 35 elderly persons. Obtained results indicate that the proposed gain-scheduling technique incorporating ideas of human decision-making models shows a general high potential for the application in adaptive shared control of mobility assistance robots

    Active exoskeleton control systems: State of the art

    Get PDF
    To get a compliant active exoskeleton controller, the force interaction controllers are mostly used in form of either the impedance or admittance controllers. The impedance or admittance controllers can only work if they are followed by either the force or the position controller respectively. These combinations place the impedance or admittance controller as high-level controller while the force or position controller as low-level controller. From the application point of view, the exoskeleton controllers are equipped by task controllers that can be formed in several ways depend on the aims. This paper presents the review of the control systems in the existing active exoskeleton in the last decade. The exoskeleton control system can be categorized according to the model system, the physical parameters, the hierarchy and the usage. These considerations give different control schemes. The main consideration of exoskeleton control design is how to achieve the best control performances. However, stability and safety are other important issues that have to be considered. © 2012 The Authors

    Dance Teaching by a Robot: Combining Cognitive and Physical Human-Robot Interaction for Supporting the Skill Learning Process

    Full text link
    This letter presents a physical human-robot interaction scenario in which a robot guides and performs the role of a teacher within a defined dance training framework. A combined cognitive and physical feedback of performance is proposed for assisting the skill learning process. Direct contact cooperation has been designed through an adaptive impedance-based controller that adjusts according to the partner's performance in the task. In measuring performance, a scoring system has been designed using the concept of progressive teaching (PT). The system adjusts the difficulty based on the user's number of practices and performance history. Using the proposed method and a baseline constant controller, comparative experiments have shown that the PT presents better performance in the initial stage of skill learning. An analysis of the subjects' perception of comfort, peace of mind, and robot performance have shown a significant difference at the p < .01 level, favoring the PT algorithm.Comment: Presented at IEEE International Conference on Robotics and Automation ICRA-201

    Dyadic behavior in co-manipulation :from humans to robots

    Get PDF
    To both decrease the physical toll on a human worker, and increase a robot’s environment perception, a human-robot dyad may be used to co-manipulate a shared object. From the premise that humans are efficient working together, this work’s approach is to investigate human-human dyads co-manipulating an object. The co-manipulation is evaluated from motion capture data, surface electromyography (EMG) sensors, and custom contact sensors for qualitative performance analysis. A human-human dyadic co-manipulation experiment is designed in which every human is instructed to behave as a leader, as a follower or neither, acting as naturally as possible. The experiment data analysis revealed that humans modulate their arm mechanical impedance depending on their role during the co-manipulation. In order to emulate the human behavior during a co-manipulation task, an admittance controller with varying stiffness is presented. The desired stiffness is continuously varied based on a scalar and smooth function that assigns a degree of leadership to the robot. Furthermore, the controller is analyzed through simulations, its stability is analyzed by Lyapunov. The resulting object trajectories greatly resemble the patterns seen in the human-human dyad experiment.Para tanto diminuir o esforço físico de um humano, quanto aumentar a percepção de um ambiente por um robô, um díade humano-robô pode ser usado para co-manipulação de um objeto compartilhado. Partindo da premissa de que humanos são eficientes trabalhando juntos, a abordagem deste trabalho é a de investigar díades humano-humano co-manipulando um objeto compartilhado. A co-manipulação é avaliada a partir de dados de um sistema de captura de movimentos, sinais de eletromiografia (EMG), e de sensores de contato customizados para análise qualitativa de desempenho. Um experimento de co-manipulação com díades humano-humano foi projetado no qual cada humano é instruído a se comportar como um líder, um seguidor, ou simplesmente agir tão naturalmente quanto possível. A análise de dados do experimento revelou que os humanos modulam a rigidez mecânica do braço a depender de que tipo de comportamento eles foram designados antes da co-manipulação. Para emular o comportamento humano durante uma tarefa de co-manipulação, um controle por admitância com rigidez variável é apresentado neste trabalho. A rigidez desejada é continuamente variada com base em uma função escalar suave que define o grau de liderança do robô. Além disso, o controlador é analisado por meio de simulações, e sua estabilidade é analisada pela teoria de Lyapunov. As trajetórias resultantes do uso do controlador mostraram um padrão de comportamento muito parecido ao do experimento com díades humano-humano
    • …
    corecore