3,726 research outputs found

    Identification of stochastic operators

    Full text link
    Based on the here developed functional analytic machinery we extend the theory of operator sampling and identification to apply to operators with stochastic spreading functions. We prove that identification with a delta train signal is possible for a large class of stochastic operators that have the property that the autocorrelation of the spreading function is supported on a set of 4D volume less than one and this support set does not have a defective structure. In fact, unlike in the case of deterministic operator identification, the geometry of the support set has a significant impact on the identifiability of the considered operator class. Also, we prove that, analogous to the deterministic case, the restriction of the 4D volume of a support set to be less or equal to one is necessary for identifiability of a stochastic operator class

    emgr - The Empirical Gramian Framework

    Full text link
    System Gramian matrices are a well-known encoding for properties of input-output systems such as controllability, observability or minimality. These so-called system Gramians were developed in linear system theory for applications such as model order reduction of control systems. Empirical Gramian are an extension to the system Gramians for parametric and nonlinear systems as well as a data-driven method of computation. The empirical Gramian framework - emgr - implements the empirical Gramians in a uniform and configurable manner, with applications such as Gramian-based (nonlinear) model reduction, decentralized control, sensitivity analysis, parameter identification and combined state and parameter reduction

    Local and Global Well-Posedness for Aggregation Equations and Patlak-Keller-Segel Models with Degenerate Diffusion

    Full text link
    Recently, there has been a wide interest in the study of aggregation equations and Patlak-Keller-Segel (PKS) models for chemotaxis with degenerate diffusion. The focus of this paper is the unification and generalization of the well-posedness theory of these models. We prove local well-posedness on bounded domains for dimensions d2d\geq 2 and in all of space for d3d\geq 3, the uniqueness being a result previously not known for PKS with degenerate diffusion. We generalize the notion of criticality for PKS and show that subcritical problems are globally well-posed. For a fairly general class of problems, we prove the existence of a critical mass which sharply divides the possibility of finite time blow up and global existence. Moreover, we compute the critical mass for fully general problems and show that solutions with smaller mass exists globally. For a class of supercritical problems we prove finite time blow up is possible for initial data of arbitrary mass.Comment: 31 page

    J-spectral factorization and equalizing vectors

    Get PDF
    For the Wiener class of matrix-valued functions we provide necessary and sufficient conditions for the existence of a JJ-spectral factorization. One of these conditions is in terms of equalizing vectors. A second one states that the existence of a JJ-spectral factorization is equivalent to the invertibility of the Toeplitz operator associated to the matrix to be factorized. Our proofs are simple and only use standard results of general factorization theory. Note that we do not use a state space representation of the system. However, we make the connection with the known results for the Pritchard-Salamon class of systems where an equivalent condition with the solvability of an algebraic Riccati equation is given. For Riesz-spectral systems another necessary and sufficient conditions for the existence of a JJ-spectral factorization in terms of the Hamiltonian is added

    Scarred eigenstates for arithmetic toral point scatterers

    Get PDF
    We investigate eigenfunctions of the Laplacian perturbed by a delta potential on the standard tori Rd/2πZd\mathbb{R}^d/2 \pi\mathbb{Z}^d in dimensions d=2,3d=2,3. Despite quantum ergodicity holding for the set of "new" eigenfunctions we show that there is scarring in the momentum representation for d=2,3d=2,3, as well as in the position representation for d=2d=2 (i.e., the eigenfunctions fail to equidistribute in phase space along an infinite subsequence of new eigenvalues.) For d=3d=3, scarred eigenstates are quite rare, but for d=2d=2 scarring in the momentum representation is very common --- with N2(x)x/logxN_{2}(x) \sim x/\sqrt{\log x} denoting the counting function for the new eigenvalues below xx, there are N2(x)/logAx\gg N_{2}(x)/\log^A x eigenvalues corresponding to momentum scarred eigenfunctions.Comment: 31 pages, 1 figur
    corecore