403 research outputs found

    The walking robot project

    Get PDF
    A walking robot was designed, analyzed, and tested as an intelligent, mobile, and a terrain adaptive system. The robot's design was an application of existing technologies. The design of the six legs modified and combines well understood mechanisms and was optimized for performance, flexibility, and simplicity. The body design incorporated two tripods for walking stability and ease of turning. The electrical hardware design used modularity and distributed processing to drive the motors. The software design used feedback to coordinate the system and simple keystrokes to give commands. The walking machine can be easily adapted to hostile environments such as high radiation zones and alien terrain. The primary goal of the leg design was to create a leg capable of supporting a robot's body and electrical hardware while walking or performing desired tasks, namely those required for planetary exploration. The leg designers intent was to study the maximum amount of flexibility and maneuverability achievable by the simplest and lightest leg design. The main constraints for the leg design were leg kinematics, ease of assembly, degrees of freedom, number of motors, overall size, and weight

    Design and realization of a master-slave system for reconstructive microsurgery

    Get PDF

    Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement

    Full text link
    [EN] Due to the elasticity of their joints, collaborative robots are seldom used in applications with force control. Besides, the industrial robot controllers are closed and do not allow the user to access the motor torques and other parameters, hindering the possibility of carrying out a customized control. A good alternative to achieve a custom force control is sending the output of the force regulator to the robot controller through motion commands (inner/outer loop control). There are different types of motion commands (e.g., position or velocity). They may be implemented in different ways (Jacobian inverse vs. Jacobian transpose), but this information is usually not available for the user. This article is dedicated to the analysis of the effect of different inner loops and their combination with several external controllers. Two of the most determinant factors found are the type of the inner loop and the stiffness matrix. The theoretical deductions have been experimentally verified on a collaborative robot UR3, allowing us to choose the best behaviour in a polishing operation according to pre-established criteria.The authors are grateful for the financial support of the Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE), to the research work here published. Rodrigo Perez-Ubeda is grateful to the Ph.D. Grant CONICYT PFCHA/DOCTORADO BECAS CHILE/2017-72180157.Pérez-Ubeda, R.; Zotovic Stanisic, R.; Gutiérrez, SC. (2020). Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement. Applied Sciences. 10(12):1-24. https://doi.org/10.3390/app10124329S1241012Top Trends Robotics 2020—International Federation of Robotics https://ifr.org/ifr-press-releases/news/top-trends-robotics-2020Gaz, C., Magrini, E., & De Luca, A. (2018). A model-based residual approach for human-robot collaboration during manual polishing operations. Mechatronics, 55, 234-247. doi:10.1016/j.mechatronics.2018.02.014Iglesias, I., Sebastián, M. A., & Ares, J. E. (2015). Overview of the State of Robotic Machining: Current Situation and Future Potential. Procedia Engineering, 132, 911-917. doi:10.1016/j.proeng.2015.12.577Perez-Ubeda, R., Gutierrez, S. C., Zotovic, R., & Lluch-Cerezo, J. (2019). Study of the application of a collaborative robot for machining tasks. Procedia Manufacturing, 41, 867-874. doi:10.1016/j.promfg.2019.10.009Spong, M. W. (1989). On the force control problem for flexible joint manipulators. IEEE Transactions on Automatic Control, 34(1), 107-111. doi:10.1109/9.8661Ren, T., Dong, Y., Wu, D., & Chen, K. (2019). Impedance control of collaborative robots based on joint torque servo with active disturbance rejection. Industrial Robot: the international journal of robotics research and application, 46(4), 518-528. doi:10.1108/ir-06-2018-0130Ajoudani, A., Tsagarakis, N. G., & Bicchi, A. (2017). Choosing Poses for Force and Stiffness Control. IEEE Transactions on Robotics, 33(6), 1483-1490. doi:10.1109/tro.2017.2708087Magrini, E., & De Luca, A. (2016). Hybrid force/velocity control for physical human-robot collaboration tasks. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). doi:10.1109/iros.2016.7759151Ahmad, S. (1993). Constrained motion (force/position) control of flexible joint robots. IEEE Transactions on Systems, Man, and Cybernetics, 23(2), 374-381. doi:10.1109/21.229451Calanca, A., & Fiorini, P. (2018). Understanding Environment-Adaptive Force Control of Series Elastic Actuators. IEEE/ASME Transactions on Mechatronics, 23(1), 413-423. doi:10.1109/tmech.2018.2790350Oh, S., & Kong, K. (2017). High-Precision Robust Force Control of a Series Elastic Actuator. IEEE/ASME Transactions on Mechatronics, 22(1), 71-80. doi:10.1109/tmech.2016.2614503Yin, H., Li, S., & Wang, H. (2016). Sliding mode position/force control for motion synchronization of a flexible-joint manipulator system with time delay. 2016 35th Chinese Control Conference (CCC). doi:10.1109/chicc.2016.7554329Ma, Z., Hong, G.-S., Ang, M. H., Poo, A.-N., & Lin, W. (2018). A Force Control Method with Positive Feedback for Industrial Finishing Applications. 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). doi:10.1109/aim.2018.8452689Huang, L., Ge, S. S., & Lee, T. H. (2006). Position/force control of uncertain constrained flexible joint robots. Mechatronics, 16(2), 111-120. doi:10.1016/j.mechatronics.2005.10.002Chiaverini, S., Siciliano, B., & Villani, L. (1999). A survey of robot interaction control schemes with experimental comparison. IEEE/ASME Transactions on Mechatronics, 4(3), 273-285. doi:10.1109/3516.789685Winkler, A., & Suchy, J. (2016). Explicit and implicit force control of an industrial manipulator — An experimental summary. 2016 21st International Conference on Methods and Models in Automation and Robotics (MMAR). doi:10.1109/mmar.2016.7575081Neranon, P., & Bicker, R. (2016). Force/position control of a robot manipulator for human-robot interaction. Thermal Science, 20(suppl. 2), 537-548. doi:10.2298/tsci151005036nChen, S., Zhang, T., & Zou, Y. (2017). Fuzzy-Sliding Mode Force Control Research on Robotic Machining. Journal of Robotics, 2017, 1-8. doi:10.1155/2017/8128479Lin, H.-I., & Dubey, V. (2018). Design of an Adaptive Force Controlled Robotic Polishing System Using Adaptive Fuzzy-PID. Advances in Intelligent Systems and Computing, 825-836. doi:10.1007/978-3-030-01370-7_64Perez-Vidal, C., Gracia, L., Sanchez-Caballero, S., Solanes, J. E., Saccon, A., & Tornero, J. (2019). Design of a polishing tool for collaborative robotics using minimum viable product approach. International Journal of Computer Integrated Manufacturing, 32(9), 848-857. doi:10.1080/0951192x.2019.1637026Chen, F., Zhao, H., Li, D., Chen, L., Tan, C., & Ding, H. (2019). Contact force control and vibration suppression in robotic polishing with a smart end effector. Robotics and Computer-Integrated Manufacturing, 57, 391-403. doi:10.1016/j.rcim.2018.12.019Mohammad, A. E. K., Hong, J., & Wang, D. (2018). Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach. Robotics and Computer-Integrated Manufacturing, 49, 54-65. doi:10.1016/j.rcim.2017.05.011Xiao, C., Wang, Q., Zhou, X., Xu, Z., Lao, X., & Chen, Y. (2019). Hybrid Force/Position Control Strategy for Electromagnetic based Robotic Polishing Systems. 2019 Chinese Control Conference (CCC). doi:10.23919/chicc.2019.8865183Li, J., Zhang, T., Liu, X., Guan, Y., & Wang, D. (2018). A Survey of Robotic Polishing. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). doi:10.1109/robio.2018.8664890Zollo, L., Siciliano, B., De Luca, A., Guglielmelli, E., & Dario, P. (2004). Compliance Control for an Anthropomorphic Robot with Elastic Joints: Theory and Experiments. Journal of Dynamic Systems, Measurement, and Control, 127(3), 321-328. doi:10.1115/1.1978911Han, D., Duan, X., Li, M., Cui, T., Ma, A., & Ma, X. (2017). Interaction Control for Manipulator with compliant end-effector based on hybrid position-force control. 2017 IEEE International Conference on Mechatronics and Automation (ICMA). doi:10.1109/icma.2017.8015929Schindlbeck, C., & Haddadin, S. (2015). Unified passivity-based Cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139036Zotovic Stanisic, R., & Valera Fernández, Á. (2009). Simultaneous velocity, impact and force control. Robotica, 27(7), 1039-1048. doi:10.1017/s0263574709005451Volpe, R., & Khosla, P. (1993). A theoretical and experimental investigation of explicit force control strategies for manipulators. IEEE Transactions on Automatic Control, 38(11), 1634-1650. doi:10.1109/9.262033Zeng, G., & Hemami, A. (1997). An overview of robot force control. Robotica, 15(5), 473-482. doi:10.1017/s026357479700057xSalisbury, J. (1980). Active stiffness control of a manipulator in cartesian coordinates. 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes. doi:10.1109/cdc.1980.272026Chen, S.-F., & Kao, I. (2000). Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers. The International Journal of Robotics Research, 19(9), 835-847. doi:10.1177/02783640022067201Institute of Robotics and Mechatronics DLR Light Weight Robot III https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-12464/#gallery/2916

    Robotically assisted eye surgery : a haptic master console

    Get PDF
    Vitreo-retinal surgery encompasses the surgical procedures performed on the vitreous humor and the retina. A procedure typically consists of the removal of the vitreous humor, the peeling of a membrane and/or the repair of a retinal detachment. Operations are performed with needle shaped instruments which enter the eye through surgeon made scleral openings. An instrument is moved by hand in four degrees of freedom (three rotations and one translation) through this opening. Two rotations (? and ? ) are for a lateral instrument tip movement. The other two DoFs (z and ?) are the translation and rotation along the instrument axis. Actuation of for example a forceps can be considered as a fifth DoF. Characteristically, the manipulation of delicate, micrometer range thick intraocular tissue is required. Today, eye surgery is performed with a maximum of two instruments simultaneously. The surgeon relies on visual feedback only, since instrument forces are below the human detection limit. A microscope provides the visual feedback. It forces the surgeon to work in a static and non ergonomic body posture. Although the surgeon’s proficiency improves throughout his career, hand tremor may become a problem around his mid-fifties. Robotically assisted surgery with a master-slave system enhances dexterity. The slave with instrument manipulators is placed over the eye. The surgeon controls the instrument manipulators via haptic interfaces at the master. The master and slave are connected by electronic hardware and control software. Implementation of tremor filtering in the control software and downscaling of the hand motion allow prolongation of the surgeon’s career. Furthermore, it becomes possible to do tasks like intraocular cannulation which can not be done by manually performed surgery. This thesis focusses on the master console. Eye surgery procedures are observed in the operating room of different hospitals to gain insight in the requirements for the master. The master console as designed has an adjustable frame, a 3D display and two haptic interfaces with a coarse adjustment arm each. The console is mounted at the head of the operating table and is combined with the slave. It is compact, easy to place and allows the surgeon to have a direct view on and a physical contact with the patient. Furthermore, it fits in today’s manual surgery arrangement. Each haptic interface has the same five degrees of freedom as the instrument inside the eye. Through these interfaces, the surgeon can feel the augmented instrument forces. Downscaling of the hand motion results in a more accurate instrument movement compared to manually performed surgery. Together with the visual feedback, it is like the surgeon grasps the instrument near the tip inside the eye. The similarity between hand motion and motion of the instrument tip as seen on the display results in an intuitive manipulation. Pre-adjustment of the interface is done via the coarse adjustment arm. Mode switching enables to control three or more instruments manipulators with only two interfaces. Two one degree of freedom master-slave systems with force feedback are built to derive the requirements for the haptic interface. Hardware in the loop testing provides valuable insights and shows the possibility of force feedback without the use of force sensors. Two five DoF haptic interfaces are realized for bimanual operation. Each DoF has a position encoder and a force feedback motor. A correct representation of the upscaled instrument forces is only possible if the disturbance forces are low. Actuators are therefore mounted to the fixed world or in the neighborhood of the pivoting point for a low contribution to the inertia. The use of direct drive for ' and and low geared, backdriveable transmissions for the other three DoFs gives a minimum of friction. Disturbance forces are further minimized by a proper cable layout and actuator-amplifier combinations without torque ripple. The similarity in DoFs between vitreo-retinal eye surgery and minimally invasive surgery (MIS) enables the system to be used for MIS as well. Experiments in combination with a slave robot for laparoscopic and thoracoscopic surgery show that an instrument can be manipulated in a comfortable and intuitive way. User experience of surgeons and others is utilized to improve the haptic interface further. A parallel instead of a serial actuation concept for the ' and DoFs reduces the inertia, eliminates the flexible cable connection between frame and motor and allows that the heat of the motor is transferred directly to the frame. A newly designed z-?? module combines the actuation and suspension of the hand held part of the interface and has a three times larger z range than in the first design of the haptic interface

    Filtering method in backlash phenomena analysis

    Get PDF
    The behavior of robotic manipulators with backlash is analyzed. Based on the pseudo-phase plane two indices are proposed to evaluate the backlash effect upon the robotic system: the root mean square error and the fractal dimension. For the dynamical analysis the noisy signals captured from the system are filtered through wavelets. Several tests are developed that demonstrate the coherence of the results
    corecore