5 research outputs found

    Coordination and Privacy Preservation in Multi-Agent Systems

    Get PDF
    This dissertation considers two key problems in multi-agent systems: coordination (including both synchronization and desynchronization) and privacy preservation. For coordination in multi-agent systems, we focus on synchronization/desynchronization of distributed pulse-coupled oscillator (PCO) networks and their applications in collective motion coordination. Pulse-coupled oscillators were originally proposed to model synchronization in biological systems such as flashing fireflies and firing neurons. In recent years, with proven scalability, simplicity, accuracy, and robustness, the PCO based synchronization strategy has become a powerful clock synchronization primitive for wireless sensor networks. Driven by these increased applications in biological networks and wireless sensor networks, synchronization of pulse-coupled oscillators has gained increased popularity. However, most existing results address the local synchronization of PCOs with initial phases constrained in a half cycle, and results on global synchronization from any initial condition are very sparse. In our work, we address global PCO synchronization from an arbitrary phase distribution under chain or directed tree graphs. More importantly, different from existing global synchronization studies on decentralized PCO networks, our work allows heterogeneous coupling functions and perturbations on PCOs\u27 natural frequencies, and our results hold under any coupling strength between zero and one, which is crucial because a large coupling strength has been shown to be detrimental to the robustness of PCO synchronization to disturbances. Compared with synchronization, desynchronization of PCOs is less explored. Desynchronization spreads the phase variables of all PCOs uniformly apart (with equal difference between neighboring phases). It has also been found in many biological phenomena, such as neuron spiking and fish signaling. Recently, phase desynchronization has been employed to achieve round-robin scheduling, which is crucial in applications as diverse as media access control of communication networks, realization of analog-to-digital converters, and scheduling of traffic flows in intersections. In our work, we systematically characterize pulse-coupled oscillators based decentralized phase desynchronization and propose an interaction function that is more general than existing results. Numerical simulations show that the proposed pulse based interaction function also has better robustness to pulse losses, time delays, and frequency errors than existing results. Collective motion coordination is fundamental in systems as diverse as mobile sensor networks, swarm robotics, autonomous vehicles, and animal groups. Inspired by the close relationship between phase synchronization/desynchronization of PCOs and the heading dynamics of connected vehicles/robots, we propose a pulse-based integrated communication and control approach for collective motion coordination. Our approach only employs simple and identical pulses, which significantly reduces processing latency and communication delay compared with conventional packet based communications. Not only can heading control be achieved in the proposed approach to coordinate the headings (orientations) of motions in a network, but also spacing control for circular motion is achievable to design the spacing between neighboring nodes (e.g., vehicles or robots). The second part of this dissertation is privacy preservation in multi-agent systems. More specifically, we focus on privacy-preserving average consensus as it is key for multi-agent systems, with applications ranging from time synchronization, information fusion, load balancing, to decentralized control. Existing average consensus algorithms require individual nodes (agents) to exchange explicit state values with their neighbors, which leads to the undesirable disclosure of sensitive information in the state. In our work, we propose a novel average consensus algorithm for time-varying directed graphs which can protect the privacy of participating nodes\u27 initial states. Leveraging algorithm-level obfuscation, the algorithm does not need the assistance of any trusted third party or data aggregator. By leveraging the inherent robustness of consensus dynamics against random variations in interaction, our proposed algorithm can guarantee privacy of participating nodes without compromising the accuracy of consensus. The algorithm is distinctly different from differential-privacy based average consensus approaches which enable privacy through compromising accuracy in obtained consensus value. The approach is able to protect the privacy of participating nodes even in the presence of multiple honest-but-curious nodes which can collude with each other

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Techniques for Decentralized and Dynamic Resource Allocation

    Get PDF
    abstract: This thesis investigates three different resource allocation problems, aiming to achieve two common goals: i) adaptivity to a fast-changing environment, ii) distribution of the computation tasks to achieve a favorable solution. The motivation for this work relies on the modern-era proliferation of sensors and devices, in the Data Acquisition Systems (DAS) layer of the Internet of Things (IoT) architecture. To avoid congestion and enable low-latency services, limits have to be imposed on the amount of decisions that can be centralized (i.e. solved in the ``cloud") and/or amount of control information that devices can exchange. This has been the motivation to develop i) a lightweight PHY Layer protocol for time synchronization and scheduling in Wireless Sensor Networks (WSNs), ii) an adaptive receiver that enables Sub-Nyquist sampling, for efficient spectrum sensing at high frequencies, and iii) an SDN-scheme for resource-sharing across different technologies and operators, to harmoniously and holistically respond to fluctuations in demands at the eNodeB' s layer. The proposed solution for time synchronization and scheduling is a new protocol, called PulseSS, which is completely event-driven and is inspired by biological networks. The results on convergence and accuracy for locally connected networks, presented in this thesis, constitute the theoretical foundation for the protocol in terms of performance guarantee. The derived limits provided guidelines for ad-hoc solutions in the actual implementation of the protocol. The proposed receiver for Compressive Spectrum Sensing (CSS) aims at tackling the noise folding phenomenon, e.g., the accumulation of noise from different sub-bands that are folded, prior to sampling and baseband processing, when an analog front-end aliasing mixer is utilized. The sensing phase design has been conducted via a utility maximization approach, thus the scheme derived has been called Cognitive Utility Maximization Multiple Access (CUMMA). The framework described in the last part of the thesis is inspired by stochastic network optimization tools and dynamics. While convergence of the proposed approach remains an open problem, the numerical results here presented suggest the capability of the algorithm to handle traffic fluctuations across operators, while respecting different time and economic constraints. The scheme has been named Decomposition of Infrastructure-based Dynamic Resource Allocation (DIDRA).Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore