62,636 research outputs found

    Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems

    Full text link
    This master tesis deals with the problem of image retrieval from large image databases. A particularly interesting problem is the retrieval of all images which are similar to one in the user's mind, taking into account his/her feedback which is expressed as positive or negative preferences for the images that the system progressively shows during the search. Here, a novel algorithm is presented for the incorporation of user preferences in an image retrieval system based exclusively on the visual content of the image, which is stored as a vector of low-level features. The algorithm considers the probability of an image belonging to the set of those sought by the user, and models the logit of this probability as the output of a linear model whose inputs are the low level image features. The image database is ranked by the output of the model and shown to the user, who selects a few positive and negative samples, repeating the process in an iterative way until he/she is satisfied. The problem of the small sample size with respect to the number of features is solved by adjusting several partial linear models and combining their relevance probabilities by means of an ordered weighted averaged (OWA) operator. Experiments were made with 40 users and they exhibited good performance in finding a target image (4 iterations on average) in a database of about 4700 imagesZuccarello, PD. (2007). Information retrieval in multimedia databases using relevance feedback algorithms. Applying logistic regression to relevance feedback in image retrieval systems. http://hdl.handle.net/10251/12196Archivo delegad

    RACOFI: A Rule-Applying Collaborative Filtering System

    Get PDF
    In this paper we give an overview of the RACOFI (Rule-Applying Collaborative Filtering) multidimensional rating system and its related technologies. This will be exemplified with RACOFI Music, an implemented collaboration agent that assists on-line users in the rating and recommendation of audio (Learning) Objects. It lets users rate contemporary Canadian music in the five dimensions of impression, lyrics, music, originality, and production. The collaborative filtering algorithms STI Pearson, STIN2, and the Per Item Average algorithms are then employed together with RuleML-based rules to recommend music objects that best match user queries. RACOFI has been on-line since August 2003 at http://racofi.elg.ca.

    Adaptive image retrieval using a graph model for semantic feature integration

    Get PDF
    The variety of features available to represent multimedia data constitutes a rich pool of information. However, the plethora of data poses a challenge in terms of feature selection and integration for effective retrieval. Moreover, to further improve effectiveness, the retrieval model should ideally incorporate context-dependent feature representations to allow for retrieval on a higher semantic level. In this paper we present a retrieval model and learning framework for the purpose of interactive information retrieval. We describe how semantic relations between multimedia objects based on user interaction can be learnt and then integrated with visual and textual features into a unified framework. The framework models both feature similarities and semantic relations in a single graph. Querying in this model is implemented using the theory of random walks. In addition, we present ideas to implement short-term learning from relevance feedback. Systematic experimental results validate the effectiveness of the proposed approach for image retrieval. However, the model is not restricted to the image domain and could easily be employed for retrieving multimedia data (and even a combination of different domains, eg images, audio and text documents)

    DC-image for real time compressed video matching

    Get PDF
    This chapter presents a suggested framework for video matching based on local features extracted from the DC-image of MPEG compressed videos, without full decompression. In addition, the relevant arguments and supporting evidences are discussed. Several local feature detectors will be examined to select the best for matching using the DC-image. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and computation complexity. The second experiment compares between using local features and global features regarding compressed video matching with respect to the DC-image. The results confirmed that the use of DC-image, despite its highly reduced size, it is promising as it produces higher matching precision, compared to the full I-frame. Also, SIFT, as a local feature, outperforms most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the real-time margin which leaves a space for further optimizations that can be done to improve this computation complexity

    Keep It Simple Sheffield – a KISS approach to the Arabic track

    Get PDF
    Sheffield’s participation in the inaugural Arabic cross language track is described here. Our goal was to examine how well one could achieve retrieval of Arabic text with the minimum of resources and adaptation of existing retrieval systems. To this end the public translators used for query translation and the minimal changes to our retrieval system are described. While the effectiveness of our resulting system is not as high as one might desire, it nevertheless provides reasonable performance particularly in the monolingual track: on average, just under four relevant documents were found in the 10 top ranked documents

    System calibration method for Fourier ptychographic microscopy

    Full text link
    Fourier ptychographic microscopy (FPM) is a recently proposed quantitative phase imaging technique with high resolution and wide field-of-view (FOV). In current FPM imaging platforms, systematic error sources come from the aberrations, LED intensity fluctuation, parameter imperfections and noise, which will severely corrupt the reconstruction results with artifacts. Although these problems have been researched and some special methods have been proposed respectively, there is no method to solve all of them. However, the systematic error is a mixture of various sources in the real situation. It is difficult to distinguish a kind of error source from another due to the similar artifacts. To this end, we report a system calibration procedure, termed SC-FPM, based on the simulated annealing (SA) algorithm, LED intensity correction and adaptive step-size strategy, which involves the evaluation of an error matric at each iteration step, followed by the re-estimation of accurate parameters. The great performance has been achieved both in simulation and experiments. The reported system calibration scheme improves the robustness of FPM and relaxes the experiment conditions, which makes the FPM more pragmatic.Comment: 18 pages, 9 figure
    • …
    corecore