240 research outputs found

    HetHetNets: Heterogeneous Traffic Distribution in Heterogeneous Wireless Cellular Networks

    Full text link
    A recent approach in modeling and analysis of the supply and demand in heterogeneous wireless cellular networks has been the use of two independent Poisson point processes (PPPs) for the locations of base stations (BSs) and user equipments (UEs). This popular approach has two major shortcomings. First, although the PPP model may be a fitting one for the BS locations, it is less adequate for the UE locations mainly due to the fact that the model is not adjustable (tunable) to represent the severity of the heterogeneity (non-uniformity) in the UE locations. Besides, the independence assumption between the two PPPs does not capture the often-observed correlation between the UE and BS locations. This paper presents a novel heterogeneous spatial traffic modeling which allows statistical adjustment. Simple and non-parameterized, yet sufficiently accurate, measures for capturing the traffic characteristics in space are introduced. Only two statistical parameters related to the UE distribution, namely, the coefficient of variation (the normalized second-moment), of an appropriately defined inter-UE distance measure, and correlation coefficient (the normalized cross-moment) between UE and BS locations, are adjusted to control the degree of heterogeneity and the bias towards the BS locations, respectively. This model is used in heterogeneous wireless cellular networks (HetNets) to demonstrate the impact of heterogeneous and BS-correlated traffic on the network performance. This network is called HetHetNet since it has two types of heterogeneity: heterogeneity in the infrastructure (supply), and heterogeneity in the spatial traffic distribution (demand).Comment: JSA

    Localization Enhanced Mobile Networks

    Get PDF
    The interest in mobile ad-hoc networks (MANETs) and often more precisely vehicular ad-hoc networks (VANETs) is steadily growing with many new applications, and even anticipated support in the emerging 5G networks. Particularly in outdoor scenarios, there are different mechanisms to make the mobile nodes aware of their geographical location at all times. The location information can be utilized at different layers of the protocol stack to enhance communication services in the network. Specifically, geographical routing can facilitate route management with smaller overhead than the traditional proactive and reactive routing protocols. In order to achieve similar advantages for radio resource management (RRM) and multiple access protocols, the concept of virtual cells is devised to exploit fully distributed knowledge of node locations. The virtual cells define clusters of MANET nodes assuming a predefined set of geographically distributed anchor points. It enables fast response of the network to changes in the nodes spatial configuration. More importantly, the notion of geographical location can be generalized to other shared contexts which can be learned or otherwise acquired by the network nodes. The strategy of enhancing communication services by shared contexts is likely to be one of the key features in the beyond-5G networks

    Multi-tier framework for the inferential measurement and data-driven modeling

    Get PDF
    A framework for the inferential measurement and data-driven modeling has been proposed and assessed in several real-world application domains. The architecture of the framework has been structured in multiple tiers to facilitate extensibility and the integration of new components. Each of the proposed four tiers has been assessed in an uncoupled way to verify their suitability. The first tier, dealing with exploratory data analysis, has been assessed with the characterization of the chemical space related to the biodegradation of organic chemicals. This analysis has established relationships between physicochemical variables and biodegradation rates that have been used for model development. At the preprocessing level, a novel method for feature selection based on dissimilarity measures between Self-Organizing maps (SOM) has been developed and assessed. The proposed method selected more features than others published in literature but leads to models with improved predictive power. Single and multiple data imputation techniques based on the SOM have also been used to recover missing data in a Waste Water Treatment Plant benchmark. A new dynamic method to adjust the centers and widths of in Radial basis Function networks has been proposed to predict water quality. The proposed method outperformed other neural networks. The proposed modeling components have also been assessed in the development of prediction and classification models for biodegradation rates in different media. The results obtained proved the suitability of this approach to develop data-driven models when the complex dynamics of the process prevents the formulation of mechanistic models. The use of rule generation algorithms and Bayesian dependency models has been preliminary screened to provide the framework with interpretation capabilities. Preliminary results obtained from the classification of Modes of Toxic Action (MOA) indicate that this could be a promising approach to use MOAs as proxy indicators of human health effects of chemicals.Finally, the complete framework has been applied to three different modeling scenarios. A virtual sensor system, capable of inferring product quality indices from primary process variables has been developed and assessed. The system was integrated with the control system in a real chemical plant outperforming multi-linear correlation models usually adopted by chemical manufacturers. A model to predict carcinogenicity from molecular structure for a set of aromatic compounds has been developed and tested. Results obtained after the application of the SOM-dissimilarity feature selection method yielded better results than models published in the literature. Finally, the framework has been used to facilitate a new approach for environmental modeling and risk management within geographical information systems (GIS). The SOM has been successfully used to characterize exposure scenarios and to provide estimations of missing data through geographic interpolation. The combination of SOM and Gaussian Mixture models facilitated the formulation of a new probabilistic risk assessment approach.Aquesta tesi proposa i avalua en diverses aplicacions reals, un marc general de treball per al desenvolupament de sistemes de mesurament inferencial i de modelat basats en dades. L'arquitectura d'aquest marc de treball s'organitza en diverses capes que faciliten la seva extensibilitat així com la integració de nous components. Cadascun dels quatre nivells en que s'estructura la proposta de marc de treball ha estat avaluat de forma independent per a verificar la seva funcionalitat. El primer que nivell s'ocupa de l'anàlisi exploratòria de dades ha esta avaluat a partir de la caracterització de l'espai químic corresponent a la biodegradació de certs compostos orgànics. Fruit d'aquest anàlisi s'han establert relacions entre diverses variables físico-químiques que han estat emprades posteriorment per al desenvolupament de models de biodegradació. A nivell del preprocés de les dades s'ha desenvolupat i avaluat una nova metodologia per a la selecció de variables basada en l'ús del Mapes Autoorganitzats (SOM). Tot i que el mètode proposat selecciona, en general, un major nombre de variables que altres mètodes proposats a la literatura, els models resultants mostren una millor capacitat predictiva. S'han avaluat també tot un conjunt de tècniques d'imputació de dades basades en el SOM amb un conjunt de dades estàndard corresponent als paràmetres d'operació d'una planta de tractament d'aigües residuals. Es proposa i avalua en un problema de predicció de qualitat en aigua un nou model dinàmic per a ajustar el centre i la dispersió en xarxes de funcions de base radial. El mètode proposat millora els resultats obtinguts amb altres arquitectures neuronals. Els components de modelat proposat s'han aplicat també al desenvolupament de models predictius i de classificació de les velocitats de biodegradació de compostos orgànics en diferents medis. Els resultats obtinguts demostren la viabilitat d'aquesta aproximació per a desenvolupar models basats en dades en aquells casos en els que la complexitat de dinàmica del procés impedeix formular models mecanicistes. S'ha dut a terme un estudi preliminar de l'ús de algorismes de generació de regles i de grafs de dependència bayesiana per a introduir una nova capa que faciliti la interpretació dels models. Els resultats preliminars obtinguts a partir de la classificació dels Modes d'acció Tòxica (MOA) apunten a que l'ús dels MOA com a indicadors intermediaris dels efectes dels compostos químics en la salut és una aproximació factible.Finalment, el marc de treball proposat s'ha aplicat en tres escenaris de modelat diferents. En primer lloc, s'ha desenvolupat i avaluat un sensor virtual capaç d'inferir índexs de qualitat a partir de variables primàries de procés. El sensor resultant ha estat implementat en una planta química real millorant els resultats de les correlacions multilineals emprades habitualment. S'ha desenvolupat i avaluat un model per a predir els efectes carcinògens d'un grup de compostos aromàtics a partir de la seva estructura molecular. Els resultats obtinguts desprès d'aplicar el mètode de selecció de variables basat en el SOM milloren els resultats prèviament publicats. Aquest marc de treball s'ha usat també per a proporcionar una nova aproximació al modelat ambiental i l'anàlisi de risc amb sistemes d'informació geogràfica (GIS). S'ha usat el SOM per a caracteritzar escenaris d'exposició i per a desenvolupar un nou mètode d'interpolació geogràfica. La combinació del SOM amb els models de mescla de gaussianes dona una nova formulació al problema de l'anàlisi de risc des d'un punt de vista probabilístic

    Localization Enhanced Mobile Networks

    Get PDF

    A survey on gas leakage source detection and boundary tracking with wireless sensor networks

    Get PDF
    Gas leakage source detection and boundary tracking of continuous objects have received a significant research attention in the academic as well as the industries due to the loss and damage caused by toxic gas leakage in large-scale petrochemical plants. With the advance and rapid adoption of wireless sensor networks (WSNs) in the last decades, source localization and boundary estimation have became the priority of research works. In addition, an accurate boundary estimation is a critical issue due to the fast movement, changing shape, and invisibility of the gas leakage compared with the other single object detections. We present various gas diffusion models used in the literature that offer the effective computational approaches to measure the gas concentrations in the large area. In this paper, we compare the continuous object localization and boundary detection schemes with respect to complexity, energy consumption, and estimation accuracy. Moreover, this paper presents the research directions for existing and future gas leakage source localization and boundary estimation schemes with WSNs

    Channel Access Management for Massive Cellular IoT Applications

    Get PDF
    As part of the steps taken towards improving the quality of life, many of everyday life activities as well as technological advancements are relying more and more on smart devices. In the future, it is expected that every electric device will be a smart device that can be connected to the internet. This gives rise to the new network paradigm known as the massive cellular IoT, where a large number of simple battery powered heterogeneous devices are collectively working for the betterment of humanity in all aspects. However, different from the traditional cellular based communication networks, IoT applications produce uplink-heavy data traffic that is composed of a large number of small data packets with different quality of service (QoS) requirements. These unique characteristics pose as a challenge to the current cellular channel access process and, hence, new and revolutionary access mechanisms are much needed. These access mechanisms need to be cost-effective, enable the support of massive number of devices, scalable, practical, and energy and radio resource efficient. Furthermore, due to the low computational capabilities of the devices, they cannot handle heavy networking intelligence and, thus, the designed channel access should be simple and light. Accordingly, in this research, we evaluate the suitability of the current channel access mechanism for massive applications and propose an energy efficient and resource preserving clustering and data aggregation solution. The proposed solution is tailored to the needs of future IoT applications. First, we recognize that for many anticipated cellular IoT applications, providing energy efficient and delay-aware access is crucial. However, in cellular networks, before devices transmit their data, they use a contention-based association protocol, known as random access channel procedure (RACH), which introduces extensive access delays and energy wastage as the number of contending devices increases. Modeling the performance of the RACH protocol is a challenging task due to the complexity of uplink transmission that exhibits a wide range of interference components; nonetheless, it is an essential process that helps determine the applicability of cellular IoT communication paradigm and shed light on the main challenges. Consequently, we develop a novel mathematical framework based on stochastic geometry to evaluate the RACH protocol and identify its limitations in the context of cellular IoT applications with a massive number of devices. To do so, we study the traditional cellular association process and establish a mathematical model for its association success probability. The model accounts for device density, spatial characteristics of the network, power control employed, and mutual interference among the devices. Our analysis and results highlight the shortcomings of the RACH protocol and give insights into the potentials brought on by employing power control techniques. Second, based on the analysis of the RACH procedure, we determine that, as the number of devices increases, the contention over the limited network radio resources increases, leading to network congestion. Accordingly, to avoid network congestion while supporting a large number of devices, we propose to use node clustering and data aggregation. As the number of supported devices increases and their QoS requirements become vast, optimizing node clustering and data aggregation processes becomes critical to be able to handle the many trade-offs that arise among different network performance metrics. Furthermore, for cost effectiveness, we propose that the data aggregator nodes be cellular devices and thus it is desirable to keep the number of aggregators to minimum such that we avoid congesting the RACH channel, while maximizing the number of successfully supported devices. Consequently, to tackle these issues, we explore the possibility of combining data aggregation and non-orthogonal multiple access (NOMA) where we propose a novel two-hop NOMA-enabled network architecture. Concepts from queuing theory and stochastic geometry are jointly exploited to derive mathematical expressions for different network performance metrics such as coverage probability, two-hop access delay, and the number of served devices per transmission frame. The established models characterize relations among various network metrics, and hence facilitate the design of two-stage transmission architecture. Numerical results demonstrate that the proposed solution improves the overall access delay and energy efficiency as compared to traditional OMA-based clustered networks. Last, we recognize that under the proposed two-hop network architecture, devices are subject to access point association decisions, i.e., to which access point a device associates plays a major role in determining the overall network performance and the perceived service by the devices. Accordingly, in the third part of the work, we consider the optimization of the two-hop network from the point of view of user association such that the number of QoS satisfied devices is maximized while minimizing the overall device energy consumption. We formulate the problem as a joint access point association, resources utilization, and energy efficient communication optimization problem that takes into account various networking factors such as the number of devices, number of data aggregators, number of available resource units, interference, transmission power limitation of the devices, aggregator transmission performance, and channel conditions. The objective is to show the usefulness of data aggregation and shed light on the importance of network design when the number of devices is massive. We propose a coalition game theory based algorithm, PAUSE, to transform the optimization problem into a simpler form that can be successfully solved in polynomial time. Different network scenarios are simulated to showcase the effectiveness of PAUSE and to draw observations on cost effective data aggregation enabled two-hop network design

    Mathematical Modelling and Analysis of Spatially Correlated Heterogeneous and Vehicular Networks - A Stochastic Geometry Approach

    Get PDF
    Heterogeneous Cellular Networks (HCNs) and vehicular communications are two key ingredients of future 5G communication networks, which aim at providing high data rates on the one former case and high reliability on the latter one. Nevertheless, in these two scenarios, interference is the main limiting factor, which makes achieving the required performance, i.e., data rate or reliability, a challenging task. Hence, in order to cope with such issue, concepts like uplink/downlink (UL/DL) decoupling, Interference-Aware (IA) strategies or cooperative communications with Cloud Radio Access Networks (CRANs) has been introduced for new releases of 4G and future 5G networks. Additionally, for the sake of increasing the data rates, new multiple access schemes like Non-Orthogonal Multiple Access (NOMA) has been proposed for 5G networks. All these techniques and concepts require accurate and tractable mathematical modelling for performance analysis. This analysis allows us to obtain theoretical insights about key performance indicators leading to a deep understanding about the considered techniques. Due to the random and irregular nature that exhibits HCNs, as well as vehicular networks, stochastic geometry has appeared recently as a promising tool for system-level modelling and analysis. Nevertheless, some features of HCNs and vehicular networks, like power control, scheduling or frequency planning, impose spatial correlations over the underlying point process that complicates significantly the mathematical analysis. In this thesis, it has been used stochastic geometry and point process theories to investigate the performance of these aforementioned techniques. Firstly, it is derived a mathematical framework for the analysis of an Interference-Aware Fractional Power Control (IAFPC) for interference mitigation in the UL of HCNs. The analysis reveals that IAFPC outperforms the classical FPC in terms of Spectral Efficiency (SE), average transmitted power, and mean and variance of the interference. Then, it is investigated the performance of a scheduling algorithm where the Mobile Terminals (MTs) may be turned off if they cause a level of interference greater than a given threshold. Secondly, a multi-user UL model to assess the coverage probability of different MTs in each cell is proposed. Then, the coverage probability of cellular systems under Hoyt fading (Nakagami-q) is studied. This fading model, allows us to consider more severe fading conditions than Rayleigh, which is normally the considered fading model for the sake of tractability. Thirdly, a novel NOMA-based scheme for CRANs is proposed, modelled and analyzed. In this scheme, two users are scheduled in the same resources according to NOMA; however the performance of cell-edge users is enhanced by means of coordinated beamforming. Finally, the performance of a decentralized Medium Access Control (MAC) algorithm for vehicular communications is investigated. With this strategy, the cellular network provides frequency and time synchronization for direct Vehicle to Vehicle (V2V) communication, which is based on its geographical information. The analysis demonstrates that there exists an operation regime where the performance is noise-limited. Then, the optimal transmit power that maximizes the Energy Efficiency (EE) of the system subject to a minimum capture probability constraint is derived

    Pedestrian Mobility Mining with Movement Patterns

    Get PDF
    In street-based mobility mining, pedestrian volume estimation receives increasing attention, as it provides important applications such as billboard evaluation, attraction ranking and emergency support systems. In practice, empirical measurements are sparse due to budget limitations and constrained mounting options. Therefore, estimation of pedestrian quantity is required to perform pedestrian mobility analysis at unobserved locations. Accurate pedestrian mobility analysis is difficult to achieve due to the non-random path selection of individual pedestrians (resulting from motivated movement behaviour), causing the pedestrian volumes to distribute non-uniformly among the traffic network. Existing approaches (pedestrian simulations and data mining methods) are hard to adjust to sensor measurements or require more expensive input data (e.g. high fidelity floor plans or total number of pedestrians in the site) and are thus unfeasible. In order to achieve a mobility model that encodes pedestrian volumes accurately, we propose two methods under the regression framework which overcome the limitations of existing methods. Namely, these two methods incorporate not just topological information and episodic sensor readings, but also prior knowledge on movement preferences and movement patterns. The first one is based on Least Squares Regression (LSR). The advantage of this method is the easy inclusion of route choice heuristics and robustness towards contradicting measurements. The second method is Gaussian Process Regression (GPR). The advantages of this method are the possibilities to include expert knowledge on pedestrian movement and to estimate the uncertainty in predicting the unknown frequencies. Furthermore the kernel matrix of the pedestrian frequencies returned by the method supports sensor placement decisions. Major benefits of the regression approach are (1) seamless integration of expert data and (2) simple reproduction of sensor measurements. Further advantages are (3) invariance of the results against traffic network homeomorphism and (4) the computational complexity depends not on the number of modeled pedestrians but on the traffic network complexity. We compare our novel approaches to state-of-the-art pedestrian simulation (Generalized Centrifugal Force Model) as well as existing Data Mining methods for traffic volume estimation (Spatial k-Nearest Neighbour) and commonly used graph kernels for the Gaussian Process Regression (Squared Exponential, Regularized Laplacian and Diffusion Kernel) in terms of prediction performance (measured with mean absolute error). Our methods showed significantly lower error rates. Since pattern knowledge is not easy to obtain, we present algorithms for pattern acquisition and analysis from Episodic Movement Data. The proposed analysis of Episodic Movement Data involve spatio-temporal aggregation of visits and flows, cluster analyses and dependency models. For pedestrian mobility data collection we further developed and successfully applied the recently evolved Bluetooth tracking technology. The introduced methods are combined to a system for pedestrian mobility analysis which comprises three layers. The Sensor Layer (1) monitors geo-coded sensor recordings on people’s presence and hands this episodic movement data in as input to the next layer. By use of standardized Open Geographic Consortium (OGC) compliant interfaces for data collection, we support seamless integration of various sensor technologies depending on the application requirements. The Query Layer (2) interacts with the user, who could ask for analyses within a given region and a certain time interval. Results are returned to the user in OGC conform Geography Markup Language (GML) format. The user query triggers the (3) Analysis Layer which utilizes the mobility model for pedestrian volume estimation. The proposed approach is promising for location performance evaluation and attractor identification. Thus, it was successfully applied to numerous industrial applications: Zurich central train station, the zoo of Duisburg (Germany) and a football stadium (Stade des Costières Nîmes, France)
    corecore