196 research outputs found

    SINGLE PHASE TO THREE PHASE CONVERTER FOR VARIABLE SPEED DRIVE APPLICATIONS

    Get PDF
    This final report is mainly to give an overview about the “Single phase to Three phase converter for variable speed drive applications” project and also the progress of the project. Due to unavailability and high cost installation of three phase power network, power inverter is very important to address this problem. Here comes the purpose of the project to develop electronic converters that applicable for three phase equipment that equipped with variable speed drive (VSD) applications to operate in single phase supply. This project proposed two converter topologies for circuit modelling and simulation. There are PRC and PWM method. The modeling for the project will be done using PSPICE software. The model will be simulating based on the load requirement which is 3-phase motor for the converter design. Based on the simulation analysis it has been proved that these two methods can be implemented in order to achieve the project’s objective which to produce 3 phase power from single phase supply with improved performance and better efficiency. For this given time frame the project only focus on the methodology on how to develop the converter using proposed method but without control strategy. Further improvement or works can be carried out to improve the design by implemented control strategy for the converter

    Study of switching transients in high frequency converters

    Get PDF
    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is evaluated

    Induction heating converter's design, control and modeling applied to continuous wire heating

    Get PDF
    Induction heating is a heating method for electrically conductive materials that takes advantage of the heat generated by the Eddy currents originated by means of a varying magnetic field. Since Michael Faraday discovered electromagnetic induction in 1831, this phenomena has been widely studied in many applications like transformers, motors or generators' design. At the turn of the 20th century, induction started to be studied as a heating method, leading to the construction of the first industrial induction melting equipment by the Electric Furnace Company in 1927. At first, the varying magnetic fields were obtained with spark-gap generators, vacuum-tube generators and low frequency motor-generator sets. With the emergence of reliable semiconductors in the late 1960's, motor-generators were replaced by solid-state converters for low frequency applications. With regard to the characterization of the inductor-workpiece system, the first models used to understand the load's behavior were based on analytical methods. These methods were useful to analyze the overall behavior of the load, but they were not accurate enough for a precise analysis and were limited to simple geometries. With the emergence of computers, numerical methods experienced a tremendous growth in the 1990's and started to be applied in the induction heating field. Nowadays, the development of commercial softwares that allow this type of analysis have started to make the use of numerical methods popular among research centers and enterprises. This type of softwares allow a great variety of complex analysis with high precision, consequently diminishing the trial and error process. The research realized in last decades, the increase in the utilization of numerical modeling and the appearance and improvement of semiconductor devices, with their corresponding cost reduction, have caused the spread of induction heating in many fields. Induction heating equipments can be found in many applications, since domestic cookers to high-power aluminum melting furnaces or automotive sealing equipments, and are becoming more and more popular thanks to their easy control, quick heating and the energy savings obtained. The present thesis focuses on the application of induction heating to wire heating. The wire heating is a continuous heating method in which the wire is continuously feeding the heating inductor. This heating method allows high production rates with reduced space requirements and is usually found in medium to high power industrial processes working 24 hours per day. The first chapters of this study introduce the induction heating phenomena, its modeling and the converters and tanks used. Afterwards, a multichannel converter for high-power and high-frequency applications is designed and implemented with the aim of providing modularity to the converter and reduce the designing time, the production cost and its maintenance. Moreover, this type of structure provides reliability to the system and enables low repairing times, which is an extremely interesting feature for 24 hours processes. Additionally, a software phase-locked loop for induction heating applications is designed and implemented to prove its flexibility and reliability. This type of control allows the use of the same hardware for different applications, which is attractive for the case of industrial applications. This phase-locked loop is afterwards used to design and implement a load-adaptative control that varies the references to have soft-switching according to load's variation, improving converter's performance. Finally, the modeling of a continuous induction wire hardening system is realized, solving the difficulty of considering the mutual influence between the thermal, electromagnetic and electric parameters. In this thesis, a continuous process is modeled and tested using numerical methods and considering converter's operation and influence in the process.Postprint (published version

    A Class-E-Based AC-DC converter for PFC applications

    Get PDF
    Connection of nonlinear utility load har increased through resent years and is expected to continue increasing. Nonlinear utility load injects harmonic content into the grid and reduces voltage quality for nearby consumers. To limit harmonic content from nonlinear load, the International Electrotechnical Commission requires power supplies to be designed according to IEC 61000-3-2. Fulfilling this standard for nonlinear load is done by power factor correction (PFC). Conventionally, pulse width modulation (PWM) converter has been used for PFC converters as they provide high efficiency with a simple control technic. However, as PWM converters switch by hard-switching, that limits the switching frequency through switching loss and generates EMI, resonant converters has become more attractive. Resonant converters operate at soft-switching where the voltage across and/ or current through is zero in the switching moment. This reduces switching loss and EMI, and allow for high switching frequency. High switching frequency is desired as it enables high power density. Through this thesis, two resonant converters using high switching frequency has been proposed. These converters are based on a Class-E converter as it has low noise and high efficiency when switching at high frequency. The thesis includes a mathematical model for both converts, simulation and experimental testing result. Result from testing differs from calculated and simulated values, and troubleshooting for one of the converters has been conducted. Through troubleshooting and a second test with changed parameters, the performance of the converter increased compared to the first test. Due to lack of time, the debugging process was not completed and will be a part of future work

    A Novel Induction Heating System Using Multilevel Neutral Point Clamped Inverter

    Get PDF
    Contribution to Knowledge: The main knowledge contribution of the dissertation can be summarized as follows: 1-A new design of induction heating power supply configuration with two categories of LLC topologies: A Novel induction heating power supply topology using multilevel neutral point clamped inverter (MNPCI) is investigated and verified. The proposed converter topology decreases the switching losses by decreasing the DC link voltage to half its DC rail voltage value with the aid of operation under soft switching mode condition. Depending on the modified LLC optimum design being introduced, it shares the advantage features of both voltage fed and current fed inverters with the capability to absorb the undesired parasitic components in the design. The new design involves adding new circuit parameter that helps in controlling the power transfer from the MNPCI to the resonant load tank. All the analytical analysis made and the corresponding experimental work verifies the prototype configuration. This contribution was presented by the author and published in: {B.M. Flayyih; M.Z. Ahmed; M. Ambroze, ''A Novel Hybrid Voltage-Current Fed Induction Heating Power Supply System Using Multilevel Neutral Point Clamped Inverter '', Energycon 2014 IEEE International Energy Conference, Dubrovnik-Croatia. From 13th - 16th May 2014}. 2-An optimum power control of induction heating system by reducing harmonic distortion content: The development of IH system has become a pressing need to improve the power transfer from power supply to the IH load of the application required, and due to variable characteristic of IH load workpiece during the heating cycle, it is necessary to develop an IH system that operates using resonant inverters with switching frequency that changes according to changing load conditions during the IH application process, in order to keep tuning with natural resonant frequency of the system and keep working under optimal operational point. A novel super frequency induction heating power supply using MNPCI with optimum control algorithm is introduced. The control strategy is to keep phase shift angle between voltage and current approximately zero at all load conditions to ensure maximum power transfer whatever the load parameters changes, that is necessary to reduce the switching losses and increase the efficiency. The load topology being used consists of variable LLC resonant tank with values chosen carefully to coincide with the design. Afterword, an Optimum Harmonic Control of a proposed induction heating power supply with MNPCI is also introduced in this research. The proposed system achieves the soft switching mode for both current and voltage with low harmonic distortion and the capability to maximize the heating power by controlling the harmonics. The modulation strategy depends on changing the ON switching time of the prototype to an optimized value that achieves natural switching with lowest possible harmonic distortion and thus, gaining highest heating power efficiency. This contribution was also presented by the author and published in {B.M. Flayyih; M.Z. Ahmed; S. MacVeigh, ''A Comprehensive Power Analysis of Induction Heating Power Supply System Using Multilevel Neutral Point Clamped Inverter With Optimum Control Algorithm '', 2015 IEEE 11th International Conference on Power Electronics and Drive Systems (PEDS), From 9th - 12th June 2015, Sydney, Australia}. This contribution is also presented by the author in: {B.M. Flayyih; M.Z. Ahmed; M. Ambroze, ''An Optimum Harmonic Control of Induction Heating Power Supply System Using Multilevel Neutral Point Clamped Inverter'', The IEEE Transportation Electrification Conference and Expo Asia-Pacific (ITEC2016), Busan, Korea on 1st - 4th June, 2016}.This thesis investigates a novel DC/AC resonant inverter of Induction Heating (IH) system presenting a Multilevel Neutral Point Clamped (MNPCI) topology, as a new part of power supply design. The main function of the prototype is to provide a maximum and steady state power transfer from converter to the resonant load tank, by achieving zero current switching (ZCS) with selecting the best design of load tank topology, and utilizing the advantage aspects of both the Voltage Fed Inverter (VFI) and Current Fed Inverter (CFI) kinds, therefore it can considered as a hybrid-inverter (HVCFI) category . The new design benefits from series resonant inverter design through using two bulk voltage source capacitors to feed a constant voltage delivery to the MNPCI inverter with half the DC rail voltage to decrease the switching losses and mitigate the over voltage surge occurred in inverter switches during operation which may cause damage when dealing with high power systems. Besides, the design profits from the resonant load topology of parallel resonant inverter, through using the LLC resonant load tank. The design gives the advantage of having an output current gain value of about Quality Factor (Q) times the inverter current and absorbs the parasitic components. On the contrary, decreasing inverter current means decreasing the switching frequency and thus, decreasing the switching losses of the system. This aspect increases the output power, which increases the heating efficiency. In order for the proposed system to be more reliable and matches the characteristics of IH process , the prototype is modelled with a variable LLC topology instead of fixed load parameters with achieving soft switching mode of ZCS and zero voltage switching (ZVS) at all load conditions and a tiny phase shift angle between output current and voltage, which might be neglected. To achieve the goal of reducing harmonic distortion, a new harmonic control modulation is introduced, by controlling the ON switching time to obtain minimum Total Harmonic Distortion (THD) content accompanied with optimum power for heating energy.Iraqi Ministry of Higher Education and Scientific Research.Al Shuhadaa Establishment of Iraq

    High Power and High Frequency Class-DE Inverters

    Get PDF
    This thesis investigates the various aspects of the theory. design and construction of a Class-DE type inverter and how these affect the power and frequency limits over which a Class-DE inverter can feasibly be used to produce AC (or RF) power. To this extent. an analysis of Class-DE operation in a half-bridge inverter is performed. A similar approach to Hamill [61 is adopted but a different time reference was used. This allows the concept of a conduction angle to b1: introduced and hence enables a more intuitive understanding of the. equations thereafter. Equations to calculate circuit element values LCR ne1wor'k are developed. The amount above the resonant frequency of the LCR network that the switching frequency must be in order to obtain the correct phase lag of the load current is shown. The effect of a non-linear output capacitance is studied, and equations are modified lo take this effect into account. It was found that a Class-DE topology offers a theoretical power advantage over a Clalls-E topology. However, this power advantage decreases with increasing frequency and is dependent on the output capacitance of the active switching devices. Using currently available MOSFETs, a Class-OE topology has a theoretical power advantage over a Class-E topology up to approximately 10MHz. However, the prac1ical problems of implementing a Class-DE invener lO work into the HF band are formidable. These practical problems and the extent to which they ltml! !he operating frequency and power of a Class-DE type inverter are investigated Guidelines to solving these practical problems are discussed and some novel soluuons are developed that considerably extend the feasible operating frequency and power of a Class-DE inverter. These solutions enabled a brc,adband design of the control circuitry. communication-link and gate-drive to be developed. Using these des[gns, a prototype broadband half-bridge inverter was developed which was capable of switching from 50k.Hz through to 6MHz. When operated in the Class-DE mode, the inverter was found to be capable of delivering a power output of over J kW from SOk.l-lz to 5Mllz with an efficiency of over 91 %. The waveforms obtained from the inverter clearly show Class-OE operation. The results of this thesis prove that a Class-DE series resonant inverter can produce. RF power up to a frequency of 5MHz with a higher combination of power and efficiency than any other present topology. The pracucal problems of even higher operaun& frequencies are discussed and some possible solutions suggested. The mismatched load tolerance of a Class-DE type inverter is briefly investigated. A Class-DE Lype inverter could be used for any applications requiring RF power in the HF band, such as AM or SW rransmirters, induction neating and plasma generators. The information presented in this thesis will be useful 10 designers wishing lo implement such an impeller. In add1non a Class-DE inverter could form the first stage of a highly efficient and high frequency DC-DC converter and the 1nformat1on presented here is directly applicable to such an applicatio

    Feasibility of high frequency alternating current power distribution for the automobile auxiliary electrical system

    Get PDF
    This study investigates the feasibility and potential benefits of high frequency alternating current (HFAC) for vehicle auxiliary electrical systems. A 100Vrms, 50kHz sinusoidal AC bus is compared with 14V DC and 42V DC electrical systems in terms of mass and energy efficiency. The investigation is focused on the four main sub-systems of an on-board electrical network, namely: the power generation, power distribution, power conversion and the electrical loads. In addition, a systemlevel inquiry is conducted for the HFAC bus and a comparable 42V DC system. A combination of computer simulation, analytical analysis and experimental work has highlighted benefits for the HFAC power distribution sub-system and for low-torque motor actuators. Specifically, the HFAC conductor mass is potentially 70% and 30% lighter than comparable 14V DC and 42V DC cables, respectively. Also, the proposed cable is expected to be at least 80% more energy efficient than the current DC conductor technology. In addition, it was found that 400Hz AC machines can successfully replace DC motor actuators with a rated torque of up to 2Nm. The former are up to 100% more efficient and approximately 60% lighter and more compact than the existing DC motors in vehicles. However, it is argued that the HFAC supply is not feasible for high-torque motor actuators. This is because of the high energy losses and increased machine torque ripple associated with the use of HFAC power. The HFAC power conversion sub-system offers benefits in terms of simple power converter structure and efficient HFAC/DC converters. However, a significant limitation is the high power loss within HFAC/AC modules, which can be as high as 900W for a 2.4kW load with continuous operation. Similar restrictions are highlighted for the HFAC power generation sub-system, where up to 400W is lost in a 4kW DC/HFAC power module. The conclusion of the present work is that the HFAC system offers mass and energy efficiency benefits for the conventional vehicle by leveraging the use of compact lowtorque motor actuators and lightweight wiring technology

    Bidirectional Electric Vehicles Service Integration in Smart Power Grid with Renewable Energy Resources

    Get PDF
    As electric vehicles (EVs) become more popular, the utility companies are forced to increase power generations in the grid. However, these EVs are capable of providing power to the grid to deliver different grid ancillary services in a concept known as vehicle-to-grid (V2G) and grid-to-vehicle (G2V), in which the EV can serve as a load or source at the same time. These services can provide more benefits when they are integrated with Photovoltaic (PV) generation. The proper modeling, design and control for the power conversion systems that provide the optimum integration among the EVs, PV generations and grid are investigated in this thesis. The coupling between the PV generation and integration bus is accomplished through a unidirectional converter. Precise dynamic and small-signal models for the grid-connected PV power system are developed and utilized to predict the system’s performance during the different operating conditions. An advanced intelligent maximum power point tracker based on fuzzy logic control is developed and designed using a mix between the analytical model and genetic algorithm optimization. The EV is connected to the integration bus through a bidirectional inductive wireless power transfer system (BIWPTS), which allows the EV to be charged and discharged wirelessly during the long-term parking, transient stops and movement. Accurate analytical and physics-based models for the BIWPTS are developed and utilized to forecast its performance, and novel practical limitations for the active and reactive power-flow during G2V and V2G operations are stated. A comparative and assessment analysis for the different compensation topologies in the symmetrical BIWPTS was performed based on analytical, simulation and experimental data. Also, a magnetic design optimization for the double-D power pad based on finite-element analysis is achieved. The nonlinearities in the BIWPTS due to the magnetic material and the high-frequency components are investigated rely on a physics-based co-simulation platform. Also, a novel two-layer predictive power-flow controller that manages the bidirectional power-flow between the EV and grid is developed, implemented and tested. In addition, the feasibility of deploying the quasi-dynamic wireless power transfer technology on the road to charge the EV during the transient stops at the traffic signals is proven
    corecore