18 research outputs found

    Global traceability

    Get PDF
    The use of Ultra High Frequency (UHF) Radio Frequency Identification (RFID) in supply chain management (SCM) systems was a big source for optimism. However, the expected rapid industry adoption of RFID did not take place. This research explores some of the existing challenges and obstacles to RFID adoption, such as the lack of consistent UHF spectrum regulations for RFID or the absence of standards that promote integration with Automatic Identification and Data Capture (AIDC) media. As a conclusion, in this project we suggest some solutions to these challenges in the use of multi-frequency RFID tags that can be read at more that one frequency or novel migration strategies and standards that would help expand the industry.Outgoin

    A Novel Long-Range Passive UHF RFID System over Twisted-pair Cable

    Get PDF
    Radio Frequency Identification (RFID) is one of the most representative, rapidly growing, and highly extendable technologies, which uses electromagnetic waves in accordance with specific communications standards and regulations to identify, track, or even localise desired objects. However, due to its high cost, limited read range, and uncertain reliability, its adoption still lags, especially in large-scale organisations. Even though an RFID distributed antenna system (DAS) can greatly improve the detection range and read rate of a single reader when system uses different combinations of antenna states with frequency and phase hopping, the lossy and heavy coaxial cables between reader and antennas still limits the system coverage and design flexibility for wide-area passive UHF RFID applications. In order to develop a cost-efficient and flexibly-installed passive RFID DAS, a novel large-range passive UHF RFID system over twisted-pair cable is proposed in this dissertation. This new system consists of one baseband central controller and one antenna subsystem, connected by a commonly used twisted-pair cable. It is shown that transmitting/receiving low frequency baseband signals over a twisted-pair cable can significantly reduce cable attenuation and extend the communication distance. A simulation is conducted to demonstrate that frequency and phase hopping can also be remotely controlled to fit this system structure by slightly varying the frequency or phase of the input reference signal of the frequency synthesis system. The features of twisted-pair cable in terms of its low cost, light weight, and bend radius greatly improve the design and installation flexibility of an RFID system. The implemented system is designed based on the ISO 18000-6C and EPC Class 1 Generation 2 standards, and can operate according to FCC (902-928 MHz) and ETSI (865-868MHz) regulations. The results of the measurement show the reader can achieve a sensitivity of - 94.5 dBm over 30 m Cat5e cable, and its sensitivity can still remain at around -94.2 dBm over 150 m Cat5e cable. The experimental results of tag detection show that the passive tags can be successfully detected over a 6 m wireless range following a 300 m of twisted-pair cable between the central controller and antenna. This detection range cannot be achieved by existing commercial RFID systems. Since the transmission and reception in a RFID system are simultaneous, finite isolation of the circulator/directional coupler and environmentally dependent reflection ratio of the antenna lead to serious leakage problems. Leakage can directly cause sensitivity degradation due to saturation of the RF components. A fast leakage suppression block is developed in efforts to solve this problem. Measurements show that this new canceller can deliver an average suppression of 36.9 dB, and this excellent performance remains when the system uses frequency hopping. With help of an improved scanning algorithm, this canceller can find its optimal status within 38 ms, and this settling time is short enough for most commercial RFID readers. By reducing the number of voltage samples taken, the convergence time can be further improved. To fully investigate this new passive UHF RFID system value, a comparison study between the new system and a commercial system is conducted. This new automatic passive UHF RFID system is confirmed to deliver high performance long-range passive tag detection. Particular advantages are shown in the fast tag read rate and capability of uplink SNR improvement. This novel system is also superior to conventional RFID systems in terms of link distance, link cost, and installation flexibility

    On a wildlife tracking and telemetry system : a wireless network approach

    Get PDF
    Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies

    Security and Privacy of Radio Frequency Identification

    Get PDF
    Tanenbaum, A.S. [Promotor]Crispo, B. [Copromotor

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity

    Power delivery mechanisms for asynchronous loads in energy harvesting systems

    Get PDF
    PhD ThesisFor systems depending on methods, a fundamental contradiction in the power delivery chain has existed between conventional to supply it. DC/DC conversion (e.g.) has therefore been an integral part of such systems to resolve this contradiction. be made tolerant to a much wider range of Vdd variance. This may open up opportunities for much more energy efficient methods of power delivery. performance of different power delivery mechanisms driving both asynchronous and synchronous loads directly from a harvester source bypassing bulky energy method, which employs a energy from a EH circuit depending on load and source conditions, is developed. through comprehensive comparative analysis. Based on the novel CBB power delivery method, an asynchronous controller is circuits to work with tasks. The successful asynchronous control design drives a case study that is meant to explore relations between power path and task path. To deal with different tasks with variable harvested power, systems may have a range of operation conditions and thus dynamically call for CBB or SCC type power set of capacitors to form CBB or SCC is implemented with economic system size. This work presents an unconventional way of designing a compact-size, quick- circuit overcome large voltage variation in EH systems and implement smart power management for harsh EH environment. The power delivery mechanisms (SCC, employed to help asynchronous- logic-based chip testing and micro-scale EH system demonstrations
    corecore