1,059 research outputs found

    Adjustable transmission power in wireless Ad Hoc networks with smart antennas

    Get PDF
    In this paper, we present a model to analyze the performance of wireless ad hoc networks with smart antennas, i.e. directional antennas with adjustable transmission power. Our results show that smart antennas can improve the network performance by mitigating the effects of interference. We illustrate our model with the NFP (Nearest with Forward Progress) transmission strategy. Our analytical and simulation results show that, for ad hoc networks with smart antennas, NFP yields good throughput and remains stable as the node density varies. © 2008 IEEE.published_or_final_versionThe Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM 2008), New Orleans, LO., USA, 30 November-4 December 2008, p. 1326-133

    Transmission radius control in wireless Ad Hoc networks with smart antennas

    Get PDF
    In this paper, we present a model to analyze the performance of three transmission strategies with smart antennas, i.e. directional antennas with adjustable transmission power. Generally, a larger transmission radius contributes a greater progress if a transmission is successful. However, it has a higher probability of collision with other concurrent transmissions. Smart antennas mitigate collisions with sectorized transmission ranges. They also extend the transmission radii. By modelling three transmission strategies, namely, Nearest with Forward Progress (NFP), Most Forward with Fixed Radius (MFR), and Most Forward with Variable Radius (MVR), our analysis illustrates that the use of smart antennas can greatly reduce the possibility of conflicts. The model considers the interference range and computes the interference probability for each transmission strategy. We have analyzed two Medium Access Control (MAC) protocols using our interference model, namely, the slotted ALOHA protocol and the slotted CSMA/CA-like protocol. The result shows that, for slotted ALOHA, NFP yields the best one-hop throughput, whereas MVR provides the best average forward progress. The overall performance is substantially improved with the slotted CSMA/CA-like protocol, and the network becomes more resilient. © 2010 IEEE.published_or_final_versio

    Passively Controllable Smart Antennas

    Get PDF
    We recently introduced passively controllable smart (PCS) antenna systems for efficient wireless transmission, with direct applications in wireless sensor networks. A PCS antenna system is accompanied by a tunable passive controller whose adjustment at every signal transmission generates a specific radiation pattern. To reduce co-channel interference and optimize the transmitted power, this antenna can be programmed to transmit data in a desired direction in such a way that no signal is transmitted (to the far field) at pre-specified undesired directions. The controller of a PCS antenna was assumed to be centralized in our previous work, which was an impediment to its implementation. In this work, we study the design of PCS antenna systems under decentralized controllers, which are both practically implementable and cost efficient. The PCS antenna proposed here is made of one active element and its programming needs solving second-order-cone optimizations. These properties differentiate a PCS antenna from the existing smart antennas, and make it possible to implement a PCS antenna on a small-sized, low-power silicon chip

    Routing and Broadcast Development for Minimizing Transmission Interruption in Multi rate Wireless Mesh Networks using Directional Antennas

    Get PDF
    Using directional antennas to reduce interference and improve throughput in multi hop wireless networks has attracted much attention from the research community in recent years. In this paper, we consider the issue of minimum delay broadcast in multi rate wireless mesh networks using directional antennas. We are given a set of mesh routers equipped with directional antennas, one of which is the gateway node and the source of the broadcast. Our objective is to minimize the total transmission delay for all the other nodes to receive a broadcast packet from the source, by determining the set of relay nodes and computing the number and orientations of beams formed by each relay node. We propose a heuristic solution with two steps. Firstly, we construct a broadcast routing tree by defining a new routing metric to select the relay nodes and compute the optimal antenna beams for each relay node. Then, we use a greedy method to make scheduling of concurrent transmissions without causing beam interference. Extensive simulations have demonstrated that our proposed method can reduce the broadcast delay significantly compared with the methods using omnidirectional antennas and single-rate transmission. In addition, the results also show that our method performs better than the method with fixed antenna beams. Keywords: Multihop, Wireless, Mesh, Omnidirectional 

    High-Performance Broadcast and Multicast Protocols for Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Recently, wireless mesh networks (WMNs) have attracted much attention. A vast amount of unicast, multicast and broadcast protocols has been developed for WMNs or mobile ad hoc networks (MANETs). First of all, broadcast and multicast in wireless networks are fundamentally different from the way in which wired networks function due to the well-known wireless broadcast/multicast advantage. Moreover, most broadcast and multicast protocols in wireless networks assume a single-radio single-channel and single-rate network model, or a generalized physical model, which does not take into account the impact of interference. This dissertation focuses on high-performance broadcast and multicast protocols designed for multi-radio multi-channel (MRMC) WMNs. MRMC increases the capacity of the network from different aspects. Multi-radio allows mesh nodes to simultaneously send and receive through different radios to its neighbors. Multi-channel allows channels to be reused across the network, which expands the available spectrum and reduces the interference. Unlike MANETs, WMNs are assumed to be static or with minimal mobility. Therefore, the main design goal in WMNs is to achieve high throughput rather than to maintain connectivity. The capacity of WMNs is constrained by the interference caused by the neighbor nodes. One direct design objective is to minimize or reduce the interference in broadcast and multicast. This dissertation presents a set of broadcast and multicast protocols and mathematical formulations to achieve the design goal in MRMC WMNs. First, the broadcast problem is addressed with full consideration of both inter-node and intra-node interference to achieve efficient broadcast. The interference-aware broadcast protocol simultaneously achieves full reliability, minimum broadcast or multicast latency, minimum redundant transmissions, and high throughput. With an MRMC WMN model, new link and channel quality metrics are defined and are suitable for the design of broadcast and multicast protocols. Second, the minimum cost broadcast problem (MCBP), or minimum number of transmissions problem, is studied for MRMC WMNs. Minimum cost broadcast potentially allows more effective and efficient schedule algorithms to be designed. The proposed protocol with joint consideration of channel assignment reduces the interference to improve the throughput in the MCBP. Minimum cost broadcast in MRMC WMNs is very different from that in the single radio single channel scenario. The channel assignment in MRMC WMNs is used to assign multiple radios of every node to different channels. It determines the actual network connectivity since adjacent nodes have to be assigned to a common channel. Transmission on different channels makes different groups of neighboring nodes, and leads to different interference. Moreover, the selection of channels by the forward nodes impacts on the number of radios needed for broadcasting. Finally, the interference optimization multicast problem in WMNs with directional antennas is discussed. Directional transmissions can greatly reduce radio interference and increase spatial reuse. The interference with directional transmissions is defined for multicast algorithm design. Multicast routing found by the interference-aware algorithm tends to have fewer channel collisions. The research work presented in this dissertation concludes that (1) new and practical link and channel metrics are required for designing broadcast and multicast in MRMC WMNs; (2) a small number of radios is sufficient to significantly improve throughput of broadcast and multicast in WMNs; (3) the number of channels has more impact on almost all performance metrics, such as the throughput, the number of transmission, and interference, in WMNs

    Cross-layer aided energy-efficient routing design for ad hoc networks

    No full text
    In this treatise, we first review some basic routing protocols conceived for ad hoc networks, followed by some design examples of cross-layer operation aided routing protocols. Specifically, cross-layer operation across the PHYsical layer (PHY), the Data Link layer (DL) and even the NETwork layer (NET) is exemplified for improving the energy efficiency of the entire system. Moreover, the philosophy of Opportunistic Routing (OR) is reviewed for the sake of further reducing the system's energy dissipation with the aid of optimized Power Allocation (PA). The system's end-to-end throughput is also considered in the context of a design example

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Controllable radio interference for experimental and testing purposes in wireless sensor networks

    Get PDF
    Abstract—We address the problem of generating customized, controlled interference for experimental and testing purposes in Wireless Sensor Networks. The known coexistence problems between electronic devices sharing the same ISM radio band drive the design of new solutions to minimize interference. The validation of these techniques and the assessment of protocols under external interference require the creation of reproducible and well-controlled interference patterns on real nodes, a nontrivial and time-consuming task. In this paper, we study methods to generate a precisely adjustable level of interference on a specific channel, with lowcost equipment and rapid calibration. We focus our work on the platforms carrying the CC2420 radio chip and we show that, by setting such transceiver in special mode, we can quickly and easily generate repeatable and precise patterns of interference. We show how this tool can be extremely useful for researchers to quickly investigate the behaviour of sensor network protocols and applications under different patterns of interference, and we further evaluate its performance
    • …
    corecore