210 research outputs found

    Adjustable inertial response from the converter with adaptive droop control in DC grids

    Get PDF
    In a DC grid, the inherent inertial support from the DC capacitors is too small to resist step changes or random fluctuations from the intermittent power resources, which results in lower DC voltage quality. In this paper, an adaptive droop control (ADC) strategy is proposed to achieve an increased inertia from the droop controlled converter. The adaptable droop coefficient according to the DC voltage variation enables fast swing of the droop curve, so that the converter can provide inertial power for the DC grid like synchronous generators in AC grids. The design of the ADC including the calculation and limitation of the adaptable droop coefficient is analyzed in detail. The small-signal analysis of the DC grid with ADC is provided to identify its stability issue. Experimental tests on a controller hardware-in-the-loop (HIL) platform of a low-voltage (LV) DC grid are carried out to validate the proposed method. In this LV DC grid, the proposed ADC is implemented on the energy storage system (ESS) which provides inertial support to improve the DC voltage quality under different power fluctuations, and smooths the power transmitted to AC grid

    Multi-terminal HVDC grids with inertia mimicry capability

    Get PDF
    The high-voltage multi-terminal dc (MTDC) systems are foreseen to experience an important development in the next years. Currently, they have appeared to be a prevailing technical and economical solution for harvesting offshore wind energy. In this study, inertia mimicry capability is added to a voltage-source converter-HVDC grid-side station in an MTDC grid connected to a weak ac grid, which can have low inertia or even operate as an islanded grid. The presented inertia mimicry control is integrated in the generalised voltage droop strategy implemented at the primary level of a two-layer hierarchical control structure of the MTDC grid to provide higher flexibility, and thus controllability to the network. Besides, complete control framework from the operational point of view is developed to integrate the low-level control of the converter stations in the supervisory control centre of the MTDC grid. A scaled laboratory test results considering the international council on large electric systems (CIGRE) B4 MTDC grid demonstrate the good performance of the converter station when it is connected to a weak islanded ac grid.Peer ReviewedPostprint (author's final draft

    Optimal frequency regulation of multi-terminal HVDC-linked grids with deloaded offshore wind farms control

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a new decentralized strategy for optimal grid frequency regulation (GFR) in an interconnected power system, where onshore grids and offshore wind farms (OWFs) are linked using a multi-terminal high-voltage direct-current (MTDC) system. In the proposed strategy, grid- and OWF-side optimal controllers are developed to coordinate the operations of synchronous generators and the MTDC converter, and the OWF and the MTDC converter, respectively, thus achieving optimal generator power and deloaded OWF power sharing of the interconnected grids and minimizing frequency deviations in each grid. Full-order dynamic models of an MTDC-linked grid and an OWF are implemented, and given each dynamic model, grid- and OWF-side decentralized linear quadratic Gaussian regulators are designed for optimal GFR of the MTDC-linked grids and supporting GFR through optimal deloading operation of the OWFs, respectively. Eigenvalue analyses are conducted with a focus on the effects of system parameter uncertainties and communication time delays. Comparative case studies are also performed to verify that the proposed strategy improves the effectiveness and stability of real-time GFR in MTDC-linked grids under various conditions.Postprint (author's final draft

    Control of Voltage-Source Converters Considering Virtual Inertia Dynamics

    Get PDF
    Controlling power-electronic converters in power systems has significantly gained more attention due to the rapid penetration of alternative energy sources. This growth in the depth of penetration also poses a threat to the frequency stability of modern power systems. Photovoltaic and wind power systems utilizing power-electronic converters without physical rotating masses, unlike traditional power generations, provide low inertia, resulting in frequency instability. Different research has developed the control aspects of power-electronic converters, offering many control strategies for different operation modes and enhancing the inertia of converter-based systems. The precise control algorithm that can improve the inertial response of converter-based systems in the power grid is called virtual inertia. This thesis employs a control methodology that mimics synchronous generators characteristics based on the swing equation of rotor dynamics to create virtual inertia. The models are also built under different cases, including grid-connected and islanded situations, using the swing equation with inner current and voltage outer loops. Analysis of the simulation results in MATLAB/Simulink demonstrates that active and reactive power are independently controlled under the grid-imposed mode, voltage and frequency are controlled under the islanded mode, and frequency stability of the system is enhanced by the virtual inertia emulation using swing equation. On this basis, it is recommended that the swing equation-based approach is incorporated with the current and voltage control loops to achieve better protection under over-current conditions. Further works are required to discover other factors that could improve the effectiveness of the models

    Control and Stability of Residential Microgrid with Grid-Forming Prosumers

    Get PDF
    The rise of the prosumers (producers-consumers), residential customers equipped with behind-the-meter distributed energy resources (DER), such as battery storage and rooftop solar PV, offers an opportunity to use prosumer-owned DER innovatively. The thesis rests on the premise that prosumers equipped with grid-forming inverters can not only provide inertia to improve the frequency performance of the bulk grid but also support islanded operation of residential microgrids (low-voltage distribution feeder operated in an islanded mode), which can improve distribution grids’ resilience and reliability without purposely designing low-voltage (LV) distribution feeders as microgrids. Today, grid-following control is predominantly used to control prosumer DER, by which the prosumers behave as controlled current sources. These grid-following prosumers deliver active and reactive power by staying synchronized with the existing grid. However, they cannot operate if disconnected from the main grid due to the lack of voltage reference. This gives rise to the increasing interest in the use of grid-forming power converters, by which the prosumers behave as voltage sources. Grid-forming converters regulate their output voltage according to the reference of their own and exhibit load sharing with other prosumers even in islanded operation. Making use of grid-forming prosumers opens up opportunities to improve distribution grids’ resilience and enhance the genuine inertia of highly renewable-penetrated power systems. Firstly, electricity networks in many regional communities are prone to frequent power outages. Instead of purposely designing the community as a microgrid with dedicated grid-forming equipment, the LV feeder can be turned into a residential microgrid with multiple paralleled grid-forming prosumers. In this case, the LV feeder can operate in both grid-connected and islanded modes. Secondly, gridforming prosumers in the residential microgrid behave as voltage sources that respond naturally to the varying loads in the system. This is much like synchronous machines extracting kinetic energy from rotating masses. “Genuine” system inertia is thus enhanced, which is fundamentally different from the “emulated” inertia by fast frequency response (FFR) from grid-following converters. Against this backdrop, this thesis mainly focuses on two aspects. The first is the small-signal stability of such residential microgrids. In particular, the impact of the increasing number of grid-forming prosumers is studied based on the linearised model. The impact of the various dynamic response of primary sources is also investigated. The second is the control of the grid-forming prosumers aiming to provide sufficient inertia for the system. The control is focused on both the inverters and the DC-stage converters. Specifically, the thesis proposes an advanced controller for the DC-stage converters based on active disturbance rejection control (ADRC), which observes and rejects the “total disturbance” of the system, thereby enhancing the inertial response provided by prosumer DER. In addition, to make better use of the energy from prosumer-owned DER, an adaptive droop controller based on a piecewise power function is proposed, which ensures that residential ESS provide little power in the steady state while supplying sufficient power to cater for the demand variation during the transient state. Proposed strategies are verified by time-domain simulations

    Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time

    Get PDF
    Traditionally, inertia in power systems has been determined by considering all the rotating masses directly connected to the grid. During the last decade, the integration of renewable energy sources, mainly photovoltaic installations and wind power plants, has led to a significant dynamic characteristic change in power systems. This change is mainly due to the fact that most renewables have power electronics at the grid interface. The overall impact on stability and reliability analysis of power systems is very significant. The power systems become more dynamic and require a new set of strategies modifying traditional generation control algorithms. Indeed, renewable generation units are decoupled from the grid by electronic converters, decreasing the overall inertia of the grid. ‘Hidden inertia’, ‘synthetic inertia’ or ‘virtual inertia’ are terms currently used to represent artificial inertia created by converter control of the renewable sources. Alternative spinning reserves are then needed in the new power system with high penetration renewables, where the lack of rotating masses directly connected to the grid must be emulated to maintain an acceptable power system reliability. This paper reviews the inertia concept in terms of values and their evolution in the last decades, as well as the damping factor values. A comparison of the rotational grid inertia for traditional and current averaged generation mix scenarios is also carried out. In addition, an extensive discussion on wind and photovoltaic power plants and their contributions to inertia in terms of frequency control strategies is included in the paper.This work was supported by the Spanish Education, Culture and Sports Ministry [FPU16/04282]

    Development and Simulation of Adaptive Neuro Fuzzy Controller Based Pitch Angle Controlled DFIG System For Wind Turbine

    Get PDF
    Wind energy is clean and renewable, which will never be dried up. The development of wind power has drawn the attention of the world and the proportion of wind power in the grid is getting higher and higher. Nowadays, the mainstream model of the wind power generator (WTG) is doubly-fed wind power generator (DFIG). With more and more wind power generators connected to the grid, the safe and steady operation of the power system will be deeply influenced. Wind turbines can operate with either fixed speed or variable speed. For fixed speed wind turbines, the generator (induction generator) is directly connected to grid. Since the speed is about fixed to the grid, and mainly certainly not controllable, the turbulence of the wind will result in power variations, and thus affect the power quality of the grid. Modern high power wind turbines are capable of adjustable speed operation and use either singly-fed induction generator (SFIG) or doubly-fed induction generator (DFIG) systems. The DFIG technology allows extracting maximum energy from the wind for low wind speeds by optimizing the turbine speed, presently DFIG based wind turbines are quite popular as it can extract maximum power. Though the DFIG based wind turbines can able to provides maximum extent of power but greatly suffers from the power oscillation, to overcome this problem this paper proposes a novel adaptive neuro fuzzy controller (ANFIS) for efficient pitch angle control of DFIG system for wind power generation, so that the DFIG based wind turbines not only able to provide maximum power but the power obtained will be highly stable also, irrespective to the wind speed fluctuations. For the comparative analysis, a comparison is also presented between the conventional PI controller and proposed ANFIS based controller. The obtained result indicates that, the proposed method is highly efficient to sustain the power oscillations as compare to state of art techniques. In addition to this it is also found that, the proposed ANFIS based pitch angle controller takes 80% less settling time as compare to conventional PI controller. DOI: 10.17762/ijritcc2321-8169.15062
    corecore