6,060 research outputs found

    Elimination of spatial connectives in static spatial logics

    Get PDF
    AbstractThe recent interest for specification on resources yields so-called spatial logics, that is specification languages offering new forms of reasoning: the local reasoning through the separation of the resource space into two disjoint subspaces, and the contextual reasoning through hypothetical extension of the resource space.We consider two resource models and their related logics:•The static ambient model, proposed as an abstraction of semistructured data (Proc. ESOP’01, Lecture Notes in Computer Science, vol. 2028, Springer, Berlin, 2001, pp. 1–22 (invited paper)) with the static ambient logic (SAL) that was proposed as a request language, both obtained by restricting the mobile ambient calculus (Proc. FOSSACS’98, Lecture Notes in Computer Science, vol. 1378, Springer, Berlin, 1998, pp. 140–155) and logic (Proc. POPL’00, ACM Press, New York, 2000, pp. 365–377) to their purely static aspects.•The memory model and the assertion language of separation logic, both defined in Reynolds (Proc. LICS’02, 2002) for the purpose of the axiomatic semantic of imperative programs manipulating pointers.We raise the questions of the expressiveness and the minimality of these logics. Our main contribution is a minimalisation technique we may apply for these two logics. We moreover show some restrictions of this technique for the extension SAL∀ with universal quantification, and we establish the minimality of the adjunct-free fragment (SALint)

    Separability in the Ambient Logic

    Get PDF
    The \it{Ambient Logic} (AL) has been proposed for expressing properties of process mobility in the calculus of Mobile Ambients (MA), and as a basis for query languages on semistructured data. We study some basic questions concerning the discriminating power of AL, focusing on the equivalence on processes induced by the logic (=L>)(=_L>). As underlying calculi besides MA we consider a subcalculus in which an image-finiteness condition holds and that we prove to be Turing complete. Synchronous variants of these calculi are studied as well. In these calculi, we provide two operational characterisations of =L_=L: a coinductive one (as a form of bisimilarity) and an inductive one (based on structual properties of processes). After showing =L_=L to be stricly finer than barbed congruence, we establish axiomatisations of =L_=L on the subcalculus of MA (both the asynchronous and the synchronous version), enabling us to relate =L_=L to structural congruence. We also present some (un)decidability results that are related to the above separation properties for AL: the undecidability of =L_=L on MA and its decidability on the subcalculus.Comment: logical methods in computer science, 44 page

    Syntactic Computation as Labelled Deduction: WH a case study

    Get PDF
    This paper addresses the question "Why do WH phenomena occur with the particular cluster of properties observed across languages -- long-distance dependencies, WH-in situ, partial movement constructions, reconstruction, crossover etc." These phenomena have been analysed by invoking a number of discrete principles and categories, but have so far resisted a unified treatment. The explanation proposed is set within a model of natural language understanding in context, where the task of understanding is taken to be the incremental building of a structure over which the semantic content is defined. The formal model is a composite of a labelled type-deduction system, a modal tree logic, and a set of rules for describing the process of interpreting the string as a set of transition states. A dynamic concept of syntax results, in which in addition to an output structure associated with each string (analogous to the level of LF), there is in addition an explicit meta-level description of the process whereby this incremental process takes place. This paper argues that WH-related phenomena can be unified by adopting this dynamic perspective. The main focus of the paper is on WH-initial structures, WH in situ structures, partial movement phenomena, and crossover phenomena. In each case, an analysis is proposed which emerges from the general characterisatioan of WH structures without construction-specific stipulation.Articl

    Model Checking Dynamic-Epistemic Spatial Logic

    Get PDF
    In this paper we focus on Dynamic Spatial Logic, the extension of Hennessy-Milner logic with the parallel operator. We develop a sound complete Hilbert-style axiomatic system for it comprehending the behavior of spatial operators in relation with dynamic/temporal ones. Underpining on a new congruence we define over the class of processes - the structural bisimulation - we prove the finite model property for this logic that provides the decidability for satisfiability, validity and model checking against process semantics. Eventualy we propose algorithms for validity, satisfiability and model checking

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Resource Splitting and Reintegration with Supplementals

    Get PDF
    In this paper we survey the various ways of expressing modality in Urdu/Hindi and show that Urdu/Hindi modals provide interesting insights on current discussions of the semantics of modality. There are very few dedicated modals in Urdu/Hindi: most of which has been arrived at constructionally via a combination of a certain kind of verb with a certain kind of embedded verb form and a certain kind of case. Among the range of constructions yielded by such combinations, there is evidence for a two-place modal operator in addition to the one-place operator usually assumed in the literature. We also discuss instances of the Actuality Entailment, which had been shown to be sensitive to aspect, but in Urdu/Hindi appears to be sensitive to aspect only some of the time, depending on the type of modal verb. Indeed, following recent proposals by Ramchand (2011), we end up with a purely lexical account of modality and the Actuality Entailment, rather than the structural one put forward by Hacquard (2010)

    LexGram - a practical categorial grammar formalism -

    Full text link
    We present the LexGram system, an amalgam of (Lambek) categorial grammar and Head Driven Phrase Structure Grammar (HPSG), and show that the grammar formalism it implements is a well-structured and useful tool for actual grammar development.Comment: 16 page

    An Abstract Machine for Unification Grammars

    Full text link
    This work describes the design and implementation of an abstract machine, Amalia, for the linguistic formalism ALE, which is based on typed feature structures. This formalism is one of the most widely accepted in computational linguistics and has been used for designing grammars in various linguistic theories, most notably HPSG. Amalia is composed of data structures and a set of instructions, augmented by a compiler from the grammatical formalism to the abstract instructions, and a (portable) interpreter of the abstract instructions. The effect of each instruction is defined using a low-level language that can be executed on ordinary hardware. The advantages of the abstract machine approach are twofold. From a theoretical point of view, the abstract machine gives a well-defined operational semantics to the grammatical formalism. This ensures that grammars specified using our system are endowed with well defined meaning. It enables, for example, to formally verify the correctness of a compiler for HPSG, given an independent definition. From a practical point of view, Amalia is the first system that employs a direct compilation scheme for unification grammars that are based on typed feature structures. The use of amalia results in a much improved performance over existing systems. In order to test the machine on a realistic application, we have developed a small-scale, HPSG-based grammar for a fragment of the Hebrew language, using Amalia as the development platform. This is the first application of HPSG to a Semitic language.Comment: Doctoral Thesis, 96 pages, many postscript figures, uses pstricks, pst-node, psfig, fullname and a macros fil
    corecore