45 research outputs found

    Parameter estimation to study the immediate impact of aortic cross-clamping using reduced order models

    Get PDF
    Aortic cross-clamping is a common strategy during vascular surgery, however, its instantaneous impact on hemodynamics is unknown. We, therefore, developed two numerical models to estimate the immediate impact of aortic clamping on the vascular properties. To assess the validity of the models, we recorded continuous invasive pressure signals during abdominal aneurysm repair surgery, immediately before and after clamping. The first model is a zero-dimensional (0D) three-element Windkessel model, which we coupled to a gradient-based parameter estimation algorithm to identify patient-specific parameters such as vascular resistance and compliance. We found a 10% increase in the total resistance and a 20% decrease in the total compliance after clamping. The second model is a nine-artery network corresponding to an average human body in which we solved the one-dimensional (1D) blood flow equations. With a similar parameter estimation method and using the results from the 0D model, we identified the resistance boundary conditions of the 1D network. Determining the patient-specific total resistance and the distribution of peripheral resistances through the parameter estimation process was sufficient for the 1D model to accurately reproduce the impact of clamping on the pressure waveform. Both models gave an accurate description of the pressure wave and had a high correlation (R2 >.95) with experimental blood pressure data.Fil: Ventre, Jeanne. Centre National de la Recherche Scientifique; FranciaFil: Politi, Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Fernández, Juan M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Ghigo, Arthur R.. Université de Toulouse; FranciaFil: Gaudric, Julien. Centre National de la Recherche Scientifique; Francia. Université de Toulouse; FranciaFil: Wray, Sandra. Universidad Favaloro; ArgentinaFil: Lagaert, Jean Baptiste. Université Paris Sud; FranciaFil: Armentano, Ricardo Luis. Universidad de la República; UruguayFil: Capurro, Claudia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Fullana, José Maria. Centre National de la Recherche Scientifique; FranciaFil: Lagrée, Pierre Yves. Centre National de la Recherche Scientifique; Franci

    Physics-informed neural networks for blood flow inverse problems

    Full text link
    Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving inverse problems, especially in cases where no complete information about the system is known and scatter measurements are available. This is especially useful in hemodynamics since the boundary information is often difficult to model, and high-quality blood flow measurements are generally hard to obtain. In this work, we use the PINNs methodology for estimating reduced-order model parameters and the full velocity field from scatter 2D noisy measurements in the ascending aorta. The results show stable and accurate parameter estimations when using the method with simulated data, while the velocity reconstruction shows dependence on the measurement quality and the flow pattern complexity. The method allows for solving clinical-relevant inverse problems in hemodynamics and complex coupled physical systems

    Immersed boundary-finite element model of fluid-structure interaction in the aortic root

    Get PDF
    It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe fluid-structure interaction models of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employ a version of Peskin's immersed boundary (IB) method with a finite element (FE) description of the structural elasticity. We develop both an idealized model of the root with three-fold symmetry of the aortic sinuses and valve leaflets, and a more realistic model that accounts for the differences in the sizes of the left, right, and noncoronary sinuses and corresponding valve cusps. As in earlier work, we use fiber-based models of the valve leaflets, but this study extends earlier IB models of the aortic root by employing incompressible hyperelastic models of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backwards displacement method that determines the unloaded configurations of the root models. Our models yield realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations demonstrate that IB models of the aortic valve are able to produce essentially grid-converged dynamics at practical grid spacings for the high-Reynolds number flows of the aortic root

    Using parametric model order reduction for inverse analysis of large nonlinear cardiac simulations

    Get PDF
    Predictive high-fidelity finite element simulations of human cardiac mechanics commonly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computational demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose to reduce the structural dimension of a monolithically coupled structure-Windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom, while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. Following a brief comparison of subspace interpolation methods, we demonstrate how projection-based model order reduction can be easily integrated into a gradient-based optimization. We demonstrate the performance of our method in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting

    Multi-Scale Cardiovascular Flow Analysis by an Integrated Meshless-Lumped Parameter Model

    Get PDF
    A computational tool that integrates a Radial basis function (RBF)-based Meshless solver with a Lumped Parameter model (LPM) is developed to analyze the multi-scale and multi-physics interaction between the cardiovascular flow hemodynamics, the cardiac function, and the peripheral circulation. The Meshless solver is based on localized RBF collocations at scattered data points which allows for automation of the model generation via CAD integration. The time-accurate incompressible flow hemodynamics are addressed via a pressure-velocity correction scheme where the ensuing Poisson equations are accurately and efficiently solved at each time step by a Dual-Reciprocity Boundary Element method (DRBEM) formulation that takes advantage of the integrated surface discretization and automated point distribution used for the Meshless collocation. The local hemodynamics are integrated with the peripheral circulation via compartments that account for branch viscous resistance (R), flow inertia (L), and vessel compliance (C), namely RLC electric circuit analogies. The cardiac function is modeled via time-varying capacitors simulating the ventricles and constant capacitors simulating the atria, connected by diodes and resistors simulating the atrioventricular and ventricular-arterial valves. This multi-scale integration in an in-house developed computational tool opens the possibility for model automation of patient-specific anatomies from medical imaging, elastodynamics analysis of vessel wall deformation for fluid-structure interaction, automated model refinement, and inverse analysis for parameter estimation

    Reconstructing Haemodynamics Quantities of Interest from Doppler Ultrasound Imaging

    Full text link
    The present contribution deals with the estimation of haemodynamics Quantities of Interest by exploiting Ultrasound Doppler measurements. A fast method is proposed, based on the PBDW method. Several methodological contributions are described: a sub-manifold partitioning is introduced to improve the reduced-order approximation, two different ways to estimate the pressure drop are compared, and an error estimation is derived. A test-case on a realistic common carotid geometry is presented, showing that the proposed approach is promising in view of realistic applications.Comment: arXiv admin note: text overlap with arXiv:1904.1336

    Modified Navier-Stokes equations for the outflow boundary conditions in hemodynamics

    Get PDF
    International audienceWe present a new approach for the outflow boundary conditions of Navier-Stokes equations in hemodynamics. We first describe some existing 3D-0D coupling methods and highlight benefits and disadvantages of each of them. We then introduce a new method that consists in adding a 3D artificial part where the Navier-Stokes equations are modified to obtain an equivalent energy balance to a standard coupling with a 3-element Windkessel model. We investigate theoretically the stability of the system and compare it to previously introduced methods. Finally we compare these coupling methods for numerical simulations of blood flow in three patient-specific models, which represent different flow regimes in the pulmonary and systemic circulations. The new method, especially in its hybrid form, is a possible alternative to existing methods. It can be in particular convenient in codes that do not allow users to implement non-standard boundary conditions
    corecore