354 research outputs found

    The interaction of knowledge sources in word sense disambiguation

    Get PDF
    Word sense disambiguation (WSD) is a computational linguistics task likely to benefit from the tradition of combining different knowledge sources in artificial in telligence research. An important step in the exploration of this hypothesis is to determine which linguistic knowledge sources are most useful and whether their combination leads to improved results. We present a sense tagger which uses several knowledge sources. Tested accuracy exceeds 94% on our evaluation corpus.Our system attempts to disambiguate all content words in running text rather than limiting itself to treating a restricted vocabulary of words. It is argued that this approach is more likely to assist the creation of practical systems

    a simple algorithm for the lexical classification of comparable adjectives

    Get PDF
    Abstract Lexical classification is one of the most widely investigated fields in (computational) linguistic and Natural language Processing. Adjectives play a significant role both in classification tasks and in applications as sentiment analysis. In this paper a simple algorithm for lexical classification of comparable adjectives, called MORE (coMparable fORm dEtector), is proposed. The algorithm is efficient in time. The method is a specific unsupervised learning technique. Results are verified against a reference standard built from 80 manually annotated lists of adjective. The algorithm exhibits an accuracy of 76%

    Sentiment Classification of Online Customer Reviews and Blogs Using Sentence-level Lexical Based Semantic Orientation Method

    Get PDF
    ABSTRACT Sentiment analysis is the process of extracting knowledge from the peoples‟ opinions, appraisals and emotions toward entities, events and their attributes. These opinions greatly impact on customers to ease their choices regarding online shopping, choosing events, products and entities. With the rapid growth of online resources, a vast amount of new data in the form of customer reviews and opinions are being generated progressively. Hence, sentiment analysis methods are desirable for developing efficient and effective analyses and classification of customer reviews, blogs and comments. The main inspiration for this thesis is to develop high performance domain independent sentiment classification method. This study focuses on sentiment analysis at the sentence level using lexical based method for different type data such as reviews and blogs. The proposed method is based on general lexicons i.e. WordNet, SentiWordNet and user defined lexical dictionaries for sentiment orientation. The relations and glosses of these dictionaries provide solution to the domain portability problem. The experiments are performed on various data sets such as customer reviews and blogs comments. The results show that the proposed method with sentence contextual information is effective for sentiment classification. The proposed method performs better than word and text level corpus based machine learning methods for semantic orientation. The results highlight that the proposed method achieves an average accuracy of 86% at sentence-level and 97% at feedback level for customer reviews. Similarly, it achieves an average accuracy of 83% at sentence level and 86% at feedback level for blog comment

    On link predictions in complex networks with an application to ontologies and semantics

    Get PDF
    It is assumed that ontologies can be represented and treated as networks and that these networks show properties of so-called complex networks. Just like ontologies “our current pictures of many networks are substantially incomplete” (Clauset et al., 2008, p. 3ff.). For this reason, networks have been analyzed and methods for identifying missing edges have been proposed. The goal of this thesis is to show how treating and understanding an ontology as a network can be used to extend and improve existing ontologies, and how measures from graph theory and techniques developed in social network analysis and other complex networks in recent years can be applied to semantic networks in the form of ontologies. Given a large enough amount of data, here data organized according to an ontology, and the relations defined in the ontology, the goal is to find patterns that help reveal implicitly given information in an ontology. The approach does not, unlike reasoning and methods of inference, rely on predefined patterns of relations, but it is meant to identify patterns of relations or of other structural information taken from the ontology graph, to calculate probabilities of yet unknown relations between entities. The methods adopted from network theory and social sciences presented in this thesis are expected to reduce the work and time necessary to build an ontology considerably by automating it. They are believed to be applicable to any ontology and can be used in either supervised or unsupervised fashion to automatically identify missing relations, add new information, and thereby enlarge the data set and increase the information explicitly available in an ontology. As seen in the IBM Watson example, different knowledge bases are applied in NLP tasks. An ontology like WordNet contains lexical and semantic knowl- edge on lexemes while general knowledge ontologies like Freebase and DBpedia contain information on entities of the non-linguistic world. In this thesis, examples from both kinds of ontologies are used: WordNet and DBpedia. WordNet is a manually crafted resource that establishes a network of representations of word senses, connected to the word forms used to express these, and connect these senses and forms with lexical and semantic relations in a machine-readable form. As will be shown, although a lot of work has been put into WordNet, it can still be improved. While it already contains many lexical and semantical relations, it is not possible to distinguish between polysemous and homonymous words. As will be explained later, this can be useful for NLP problems regarding word sense disambiguation and hence QA. Using graph- and network-based centrality and path measures, the goal is to train a machine learning model that is able to identify new, missing relations in the ontology and assign this new relation to the whole data set (i.e., WordNet). The approach presented here will be based on a deep analysis of the ontology and the network structure it exposes. Using different measures from graph theory as features and a set of manually created examples, a so-called training set, a supervised machine learning approach will be presented and evaluated that will show what the benefit of interpreting an ontology as a network is compared to other approaches that do not take the network structure into account. DBpedia is an ontology derived from Wikipedia. The structured information given in Wikipedia infoboxes is parsed and relations according to an underlying ontology are extracted. Unlike Wikipedia, it only contains the small amount of structured information (e.g., the infoboxes of each page) and not the large amount of unstructured information (i.e., the free text) of Wikipedia pages. Hence DBpedia is missing a large number of possible relations that are described in Wikipedia. Also compared to Freebase, an ontology used and maintained by Google, DBpedia is quite incomplete. This, and the fact that Wikipedia is expected to be usable to compare possible results to, makes DBpedia a good subject of investigation. The approach used to extend DBpedia presented in this thesis will be based on a thorough analysis of the network structure and the assumed evolution of the network, which will point to the locations of the network where information is most likely to be missing. Since the structure of the ontology and the resulting network is assumed to reveal patterns that are connected to certain relations defined in the ontology, these patterns can be used to identify what kind of relation is missing between two entities of the ontology. This will be done using unsupervised methods from the field of data mining and machine learning

    Diagnosing Reading strategies: Paraphrase Recognition

    Get PDF
    Paraphrase recognition is a form of natural language processing used in tutoring, question answering, and information retrieval systems. The context of the present work is an automated reading strategy trainer called iSTART (Interactive Strategy Trainer for Active Reading and Thinking). The ability to recognize the use of paraphrase—a complete, partial, or inaccurate paraphrase; with or without extra information—in the student\u27s input is essential if the trainer is to give appropriate feedback. I analyzed the most common patterns of paraphrase and developed a means of representing the semantic structure of sentences. Paraphrases are recognized by transforming sentences into this representation and comparing them. To construct a precise semantic representation, it is important to understand the meaning of prepositions. Adding preposition disambiguation to the original system improved its accuracy by 20%. The preposition sense disambiguation module itself achieves about 80% accuracy for the top 10 most frequently used prepositions. The main contributions of this work to the research community are the preposition classification and generalized preposition disambiguation processes, which are integrated into the paraphrase recognition system and are shown to be quite effective. The recognition model also forms a significant part of this contribution. The present effort includes the modeling of the paraphrase recognition process, featuring the Syntactic-Semantic Graph as a sentence representation, the implementation of a significant portion of this design demonstrating its effectiveness, the modeling of an effective preposition classification based on prepositional usage, the design of the generalized preposition disambiguation module, and the integration of the preposition disambiguation module into the paraphrase recognition system so as to gain significant improvement

    Natural language interface to relational database: a simplified customization approach

    Get PDF
    Natural language interfaces to databases (NLIDB) allow end-users with no knowledge of a formal language like SQL to query databases. One of the main open problems currently investigated is the development of NLIDB systems that are easily portable across several domains. The present study focuses on the development and evaluation of methods allowing to simplify customization of NLIDB targeting relational databases without sacrificing coverage and accuracy. This goal is approached by the introduction of two authoring frameworks that aim to reduce the workload required to port a NLIDB to a new domain. The first authoring approach is called top-down; it assumes the existence of a corpus of unannotated natural language sample questions used to pre-harvest key lexical terms to simplify customization. The top-down approach further reduces the configuration workload by autoincluding the semantics for negative form of verbs, comparative and superlative forms of adjectives in the configuration model. The second authoring approach introduced is bottom-up; it explores the possibility of building a configuration model with no manual customization using the information from the database schema and an off-the-shelf dictionary. The evaluation of the prototype system with geo-query, a benchmark query corpus, has shown that the top-down approach significantly reduces the customization workload: 93% of the entries defining the meaning of verbs and adjectives which represents the hard work has been automatically generated by the system; only 26 straightforward mappings and 3 manual definitions of meaning were required for customization. The top-down approach answered correctly 74.5 % of the questions. The bottom-up approach, however, has correctly answered only 1/3 of the questions due to insufficient lexicon and missing semantics. The use of an external lexicon did not improve the system's accuracy. The bottom-up model has nevertheless correctly answered 3/4 of the 105 simple retrieval questions in the query corpus not requiring nesting. Therefore, the bottom-up approach can be useful to build an initial lightweight configuration model that can be incrementally refined by using the failed queries to train a topdown model for example. The experimental results for top-down suggest that it is indeed possible to construct a portable NLIDB that reduces the configuration effort while maintaining a decent coverage and accuracy

    Linking named entities to Wikipedia

    Get PDF
    Natural language is fraught with problems of ambiguity, including name reference. A name in text can refer to multiple entities just as an entity can be known by different names. This thesis examines how a mention in text can be linked to an external knowledge base (KB), in our case, Wikipedia. The named entity linking (NEL) task requires systems to identify the KB entry, or Wikipedia article, that a mention refers to; or, if the KB does not contain the correct entry, return NIL. Entity linking systems can be complex and we present a framework for analysing their different components, which we use to analyse three seminal systems which are evaluated on a common dataset and we show the importance of precise search for linking. The Text Analysis Conference (TAC) is a major venue for NEL research. We report on our submissions to the entity linking shared task in 2010, 2011 and 2012. The information required to disambiguate entities is often found in the text, close to the mention. We explore apposition, a common way for authors to provide information about entities. We model syntactic and semantic restrictions with a joint model that achieves state-of-the-art apposition extraction performance. We generalise from apposition to examine local descriptions specified close to the mention. We add local description to our state-of-the-art linker by using patterns to extract the descriptions and matching against this restricted context. Not only does this make for a more precise match, we are also able to model failure to match. Local descriptions help disambiguate entities, further improving our state-of-the-art linker. The work in this thesis seeks to link textual entity mentions to knowledge bases. Linking is important for any task where external world knowledge is used and resolving ambiguity is fundamental to advancing research into these problems

    Word sense discovery and disambiguation

    Get PDF
    The work is based on the assumption that words with similar syntactic usage have similar meaning, which was proposed by Zellig S. Harris (1954,1968). We study his assumption from two aspects: Firstly, different meanings (word senses) of a word should manifest themselves in different usages (contexts), and secondly, similar usages (contexts) should lead to similar meanings (word senses). If we start with the different meanings of a word, we should be able to find distinct contexts for the meanings in text corpora. We separate the meanings by grouping and labeling contexts in an unsupervised or weakly supervised manner (Publication 1, 2 and 3). We are confronted with the question of how best to represent contexts in order to induce effective classifiers of contexts, because differences in context are the only means we have to separate word senses. If we start with words in similar contexts, we should be able to discover similarities in meaning. We can do this monolingually or multilingually. In the monolingual material, we find synonyms and other related words in an unsupervised way (Publication 4). In the multilingual material, we ?nd translations by supervised learning of transliterations (Publication 5). In both the monolingual and multilingual case, we first discover words with similar contexts, i.e., synonym or translation lists. In the monolingual case we also aim at finding structure in the lists by discovering groups of similar words, e.g., synonym sets. In this introduction to the publications of the thesis, we consider the larger background issues of how meaning arises, how it is quantized into word senses, and how it is modeled. We also consider how to define, collect and represent contexts. We discuss how to evaluate the trained context classi?ers and discovered word sense classifications, and ?nally we present the word sense discovery and disambiguation methods of the publications. This work supports Harris' hypothesis by implementing three new methods modeled on his hypothesis. The methods have practical consequences for creating thesauruses and translation dictionaries, e.g., for information retrieval and machine translation purposes. Keywords: Word senses, Context, Evaluation, Word sense disambiguation, Word sense discovery
    • …
    corecore