7,006 research outputs found

    Universal Quantum Computing with Spin and Valley

    Full text link
    We investigate a two-electron double quantum dot with both spin and valley degrees of freedom as they occur in graphene, carbon nanotubes, or silicon, and regard the 16-dimensional space with one electron per dot as a four-qubit logic space. In the spin-only case, it is well known that the exchange coupling between the dots combined with arbitrary single-qubit operations is sufficient for universal quantum computation. The presence of the valley degeneracy in the electronic band structure alters the form of the exchange coupling and in general leads to spin-valley entanglement. Here, we show that universal quantum computation can still be performed by exchange interaction and single-qubit gates in the presence of the additional (valley) degree of freedom. We present an explicit pulse sequence for a spin-only controlled-NOT consisting of the generalized exchange coupling and single-electron spin and valley rotations. We also propose state preparations and projective measurements with the use of adiabatic transitions between states with (1,1) and (0,2) charge distributions similar to the spin-only case, but with the additional requirement of controlling the spin and the valley Zeeman energies by an external magnetic field. Finally, we demonstrate a universal two-qubit gate between a spin and a valley qubit, allowing universal gate operations on the combined spin and valley quantum register.Comment: 18 pages, 3 figures, 1 tabl

    Adiabatic and Hamiltonian computing on a 2D lattice with simple 2-qubit interactions

    Get PDF
    We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the movement of one particle is controlled by the presence or absence of other particles, an effective quantum field effect transistor that allows the construction of controlled-NOT and controlled-rotation gates. The construction translates into a model for universal quantum computation with time-independent 2-qubit ZZ and XX+YY interactions on an (almost) planar grid. The effective Hamiltonian is arrived at by a single use of first-order perturbation theory avoiding the use of perturbation gadgets. The dynamics and spectral properties of the effective Hamiltonian can be fully determined as it corresponds to a particular realization of a mapping between a quantum circuit and a Hamiltonian called the space-time circuit-to-Hamiltonian construction. Because of the simple interactions required, and because no higher-order perturbation gadgets are employed, our construction is potentially realizable using superconducting or other solid-state qubits.Comment: 33 pages, 5 figure

    Robust adiabatic approach to optical spin entangling in coupled quantum dots

    Get PDF
    Excitonic transitions offer a possible route to ultrafast optical spin manipulation in coupled nanostructures. We perform here a detailed study of the three principal exciton-mediated decoherence channels for optically-controlled electron spin qubits in coupled quantum dots: radiative decay of the excitonic state, exciton-phonon interactions, and Landau-Zener transitions between laser-dressed states. We consider a scheme to produce an entangling controlled-phase gate on a pair of coupled spins which, in its simplest dynamic form, renders the system subject to fast decoherence rates associated with exciton creation during the gating operation. In contrast, we show that an adiabatic approach employing off-resonant laser excitation allows us to suppress all sources of decoherence simultaneously, significantly increasing the fidelity of operations at only a relatively small gating time cost. We find that controlled-phase gates accurate to one part in 10^2 can realistically be achieved with the adiabatic approach, whereas the conventional dynamic approach does not appear to support a fidelity suitable for scalable quantum computation. Our predictions could be demonstrated experimentally in the near future.Comment: 26 pages, 9 figure

    What is a quantum computer, and how do we build one?

    Full text link
    The DiVincenzo criteria for implementing a quantum computer have been seminal in focussing both experimental and theoretical research in quantum information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. The question is therefore what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that according to this definition a device is a quantum computer if it obeys the following four criteria: Any quantum computer must (1) have a quantum memory; (2) facilitate a controlled quantum evolution of the quantum memory; (3) include a method for cooling the quantum memory; and (4) provide a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault-tolerantly. We discuss various existing quantum computing paradigms, and how they fit within this framework. Finally, we lay out a roadmap for selecting an avenue towards building a quantum computer. This is summarized in a decision tree intended to help experimentalists determine the most natural paradigm given a particular physical implementation

    Quantum computation with cold bosonic atoms in an optical lattice

    Full text link
    We analyse an implementation of a quantum computer using bosonic atoms in an optical lattice. We show that, even though the number of atoms per site and the tunneling rate between neighbouring sites is unknown, one may perform a universal set of gates by means of adiabatic passage

    Effect of noise on geometric logic gates for quantum computation

    Full text link
    We introduce the non-adiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation and show how it could be implemented with superconducting charge qubits. While it may circumvent many of the drawbacks related to the adiabatic (Berry) version of geometric gates, we show that the effect of fluctuations of the control parameters on non-adiabatic phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater extent quantum gates that use the Berry phase instead of the dynamic phase.Comment: 8 pages, 4 figures; published versio
    corecore