24,813 research outputs found

    Algebraic High-Level Nets as Weak Adhesive HLR Categories

    Get PDF
    Adhesive high-level replacement (HLR) systems have been recently introduced as a new categorical framework for double pushout transformations. Algebraic high-level nets combine algebraic specifications with Petri nets to allow the modelling of data, data flow and data changes within the net. In this paper, we show that algebraic high-level schemas and nets fit well into the context of weak adhesive HLR categories. This allows us to apply the developed theory also to algebraic high-level net transformations

    Finitary M-Adhesive Categories : Unabridged Version

    Get PDF
    Finitary M-adhesive categories are M-adhesive categories with finite objects only, where the notion M-adhesive category is short for weak adhesive high-level replacement (HLR) category. We call an object finite if it has a finite number of M-subobjects. In this paper, we show that in finitary M-adhesive categories we do not only have all the well-known properties of M-adhesive categories, but also all the additional HLR-requirements which are needed to prove the classical results for M-adhesive systems. These results are the Local Church-Rosser, Parallelism, Concurrency, Embedding, Extension, and Local Confluence Theorems, where the latter is based on critical pairs. More precisely, we are able to show that finitary M-adhesive categories have a unique E-M factorization and initial pushouts, and the existence of an M-initial object implies in addition finite coproducts and a unique E'-M' pair factorization. Moreover, we can show that the finitary restriction of each M-adhesive category is a finitary M-adhesive category and finitariness is preserved under functor and comma category constructions based on M-adhesive categories. This means that all the classical results are also valid for corresponding finitary M-adhesive systems like several kinds of finitary graph and Petri net transformation systems. Finally, we discuss how some of the results can be extended to non-M-adhesive categories

    Finitary M-adhesive categories

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugÀnglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Finitary M-adhesive categories are M-adhesive categories with finite objects only, where M-adhesive categories are a slight generalisation of weak adhesive high-level replacement (HLR) categories. We say an object is finite if it has a finite number of M-subobjects. In this paper, we show that in finitary M-adhesive categories we not only have all the well-known HLR properties of weak adhesive HLR categories, which are already valid for M-adhesive categories, but also all the additional HLR requirements needed to prove classical results including the Local Church-Rosser, Parallelism, Concurrency, Embedding, Extension and Local Confluence Theorems, where the last of these is based on critical pairs. More precisely, we are able to show that finitary M-adhesive categories have a unique Δ'-M factorisation and initial pushouts, and the existence of an M-initial object implies we also have finite coproducts and a unique Δ' -M pair factorisation. Moreover, we can show that the finitary restriction of each M-adhesive category is a finitary M-adhesive category, and finitarity is preserved under functor and comma category constructions based on M-adhesive categories. This means that all the classical results are also valid for corresponding finitary M-adhesive transformation systems including several kinds of finitary graph and Petri net transformation systems. Finally, we discuss how some of the results can be extended to non-M-adhesive categories

    Reconfigurable Petri Systems with Negative Application Conditions

    Get PDF
    Diese Arbeit fĂŒhrt negative Anwendungsbedingungen (NACs) fĂŒr verschiedene Typen von rekonfigurierbaren Petri Systemen ein. Dies sind Petri Systeme mit einer Menge von Transformationsregeln, die eine dynamische VerĂ€nderung des Petri Systems ermöglichen. Negative Anwendungsbedingungen sind eine Kontrollstruktur um die Anwendung einer Regel zu verbieten, wenn eine bestimmte Struktur vorhanden ist. Wie in [Lam07] und [LEOP08] vorgestellt, sind schwach adhĂ€sive HLR Kategorien mit negativen Anwendungsbedingungen schwach adhĂ€sive HLR Kategorien mit drei zusĂ€tzlichen, ausgezeichneten Morphismenklassen und einigen zusĂ€tzlichen Eigenschaften. Diese Eigenschaften werden benötigt, um Ergebnisse wie das Lokale Church-Rosser Theorem, das Parallelismustheorem, das VollstĂ€ndigkeitstheorem der kritischen Paare, das NebenlĂ€ufigkeitstheorem, das Einbettungs- und das Erweiterungstheorem und das Lokale Konfluenz Theorem fĂŒr die Benutzung mit negativen Anwendungsbedingungen zu verallgemeinern. Das Hauptziel dieser Arbeit besteht darin nachzuweisen, dass die Kategorien PTSys der P/T Systeme, AHLNet der AHL Netze, AHLSystems der AHL Systeme und PTSys(L) der L-gelabelten P/T Systeme schwach adhĂ€sive HLR Kategorien mit negativen Anwendungsbedingungen sind. DafĂŒr werden diese Kategorien formal eingefĂŒhrt und die dafĂŒr benötigten Eigenschaften detailliert bewiesen. ZusĂ€tzlich wird die praktische Anwendung der erzielten Ergebnisse in Form von Fallstudien dargelegt.This thesis introduces negative application conditions (NACs) for varied kinds of reconfigurable Petri systems. These are Petri systems together with a set of transformation rules that allow changing the Petri system dynamically. Negative applications are a control structure for restricting the application of a rule if a certain structute is present. As introduced in [Lam07] and [LEOP08], (weak) adhesive high-level replacement (HLR) categories with negative application conditions are (weak) adhesive HLR categories with three additional distinguished morphism classes and some additional properties. These properties are required for generalizing results like Local Church- Rosser Theorem, Parallelism Theorem, Completeness Theorem of Critical Pairs, Concurrency Theorem, Embedding and Extension Theorem and Local Confluence Theorem for the use of negative application conditions. The main goals of this thesis are proving that the categories PTSys of P/T systems, AHLNet of algebraic high-level (AHL) nets, AHLSystems of AHL systems and PTSys(L) of L-labeled P/T systems are weak adhesive HLR categories with negative application conditions. Therefore, these categories are formally introduced and the required properties are proven in detail. Additionally, the practical application of the achieved results is presented in form of case studies

    Generalised compositionality in graph transformation

    Get PDF
    We present a notion of composition applying both to graphs and to rules, based on graph and rule interfaces along which they are glued. The current paper generalises a previous result in two different ways. Firstly, rules do not have to form pullbacks with their interfaces; this enables graph passing between components, meaning that components may “learn” and “forget” subgraphs through communication with other components. Secondly, composition is no longer binary; instead, it can be repeated for an arbitrary number of components

    Reconfigurable Decorated PT Nets with Inhibitor Arcs and Transition Priorities

    Full text link
    In this paper we deal with additional control structures for decorated PT Nets. The main contribution are inhibitor arcs and priorities. The first ensure that a marking can inhibit the firing of a transition. Inhibitor arcs force that the transition may only fire when the place is empty. an order of transitions restrict the firing, so that an transition may fire only if it has the highest priority of all enabled transitions. This concept is shown to be compatible with reconfigurable Petri nets

    Satisfaction, Restriction and Amalgamation of Constraints in the Framework of M-Adhesive Categories

    Get PDF
    Application conditions for rules and constraints for graphs are well-known in the theory of graph transformation and have been extended already to M-adhesive transformation systems. According to the literature we distinguish between two kinds of satisfaction for constraints, called general and initial satisfaction of constraints, where initial satisfaction is defined for constraints over an initial object of the base category. Unfortunately, the standard definition of general satisfaction is not compatible with negation in contrast to initial satisfaction. Based on the well-known restriction of objects along type morphisms, we study in this paper restriction and amalgamation of application conditions and constraints together with their solutions. In our main result, we show compatibility of initial satisfaction for positive constraints with restriction and amalgamation, while general satisfaction fails in general. Our main result is based on the compatibility of composition via pushouts with restriction, which is ensured by the horizontal van Kampen property in addition to the vertical one that is generally satisfied in M-adhesive categories.Comment: In Proceedings ACCAT 2012, arXiv:1208.430
    • 

    corecore