80 research outputs found

    Laser writable high-K dielectric for van der Waals nano-electronics

    Get PDF
    This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.Like silicon-based semiconductor devices, van der Waals heterostructures will require integration with high-K oxides. This is needed to achieve suitable voltage scaling, improved performance as well as allowing for added functionalities. Unfortunately, commonly used high-k oxide deposition methods are not directly compatible with 2D materials. Here we demonstrate a method to embed a multi-functional few nm thick high-k oxide within van der Waals devices without degrading the properties of the neighbouring 2D materials. This is achieved by in-situ laser oxidation of embedded few layer HfS2 crystals. The resultant oxide is found to be in the amorphous phase with a dielectric constant of k~15 and break-down electric fields in the range of 0.5-0.6 V/nm. This transformation allows for the creation of a variety of fundamental nano-electronic and opto-electronic devices including, flexible Schottky barrier field effect transistors, dual gated graphene transistors as well as vertical light emitting and detecting tunnelling transistors. Furthermore, upon dielectric break-down, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching between two resistance states. This allows for the creation of resistive switching random access memories (ReRAMs). We believe that this method of embedding a high-k oxide within complex van der Waals heterostructures could play an important role in future flexible multi-functional van der Waals devices.F.W acknowledges support from the Royal Academy of Engineering. J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1). S.R. and M.F.C. acknowledge financial support from EPSRC (Grant no. EP/K010050/1, EP/M001024/1, EP/M002438/1), from Royal Society international Exchanges Scheme 2016/R1, from The Leverhulme trust (grant title “Quantum Revolution” and "Quantum Drums"). A.P Rooney and S.J Haigh acknowledge support from the EPSRC postdoctoral fellowship and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement ERC-2016-STG-EvoluTEM-715502) and the Defence Threat Reduction Agency (HDTRA1-12-1-0013). I.A. acknowledges financial support from The European Commission Marie Curie Individual Fellowships (Grant number 701704)

    Doped And Chemically Transformed Transition Metal Dichalcogenides (tmdcs) For Two-Dimensional (2d) Electronics

    Get PDF
    Transition metal dichalcogenides (TMDCs) as the semiconductor counterparts of gra-phene have emerged as promising channel materials for flexible electronic and optoelectronic devices. The 2D layer structure of TMDCs enables the ultimate scaling of TMDC-based devices down to atomic thickness. Furthermore, the absence of dangling bonds in these materials helps to form high quality heterostructures with ultra-clean interfaces. The main objective of this work is to develop novel approaches to fabricating TMDC-based 2D electronic devices such as diodes and transistors. In the first part, we have fabricated 2D p-n junction diodes through van der Waals assembly of heavily p-doped MoS2 (WSe2) and lightly n-doped MoS2 to form vertical homo-(hetero-) junctions, which allows to continuously tune the electron concentration on the n-side for a wide range. In sharp contrast to conventional p-n junction diodes, we have observed nearly exponential dependence of the reverse-current on gate-voltage in our 2D p-n junction devices, which can be attributed to band-to-band tunneling through a gate-tunable tunneling barrier. In the second part, we developed a new strategy to engineer high-Îș dielectrics by con-verting atomically thin metallic 2D TMDCs into high-Îș dielectrics because it remains a signifi-cant challenge to deposit uniform high-Îș dielectric thin films on TMDCs with ALD due to the lack of dangling bonds on the surfaces of TMDCs. In our study, we converted mechanically ex-foliated atomically thin layers of a 2D metal, TaS2 (HfSe2) into a high-Îș dielectric, Ta2O5 (HfO2) by thermal oxidation. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and atomic force microscopy (AFM) were used to understand the phase conversion process. Capacitance-voltage (C-V) measure-ments were carried out to determine the dielectric constant of thermally oxidized dielec-trics. We fabricated MoS2 field-effect transistors (FETs) with thermally oxidized ultra-thin and ultra-smooth Ta2O5 as top-gate and bottom-gate high-Îș dielectric layers. We observed promis-ing device performance, including a nearly ideal subthreshold swing of ~ 61 mV/dec at room temperature, negligible hysteresis, drain-current saturation in the output characteristics, a high on/off ratio ~ 106, and a room temperature field-effect mobility exceeding 60 cm2/Vs. To fur-ther reduce the leak current and improve the device performance, we have also investigated the chemical transformation of HfSe2 to HfO2 high-Îș dielectric, which has significantly larger band gap than Ta2O5

    Substrate Effects And Dielectric Integration In 2d Electronics

    Get PDF
    The ultra-thin body of monolayer (and few-layer) two dimensional (2D) semiconducting materials such as transitional metal dichalconiges (TMDs), black phosphorous (BP) has demonstrated tremendous beneficial physical, transport, and optical properties for a wide range of applications. Because of their ultrathin bodies, the properties of 2D materials are highly sensitive to environmental effects. Particularly, the performance of 2D semiconductor electronic devices is strongly dependent on the substrate/dielectric properties, extrinsic impurities and absorbates. In this work, we systematically studied the transport properties of mechanically exfoliated few layer TMD field-effect transistors (FETs) consistently fabricated on various substrates including SiO2,Parylene –C, Al2O3, SiO2 modified by octadecyltrimethoxysilane (OTMS) self-assembled monolayer (SAMs), and hexagonal boron nitride (h-BN). We performed variable temperature transport measurements to understand the effects of various scattering mechanisms such as remote surface phonon scattering, coulomb scattering, surface roughness scattering on the mobility of these devices. To reveal the intrinsic channel properties, we also investigated TMD devices encapsulated by h-BN. To further optimize the dielectric interface and electrostatic control of the TMD channels, we developed a novel thermal-oxidation method to turn few-layer 2D metals into ultrathin and atomically flat high –Îș dielectrics. In order to optimize the performance of TMD electronic devices, it is also critical to fabricate low resistance ohmic contacts required for effectively injecting charge carriers into the TMD channel. Along this direction, we developed a new contact strategy to minimize the contact resistance for a variety of TMDs by van der Waals assembly of doped TMDs as contacts and undoped TMDs as channel materials. The developed unique method for low-resistance ohmic contacts achieved using the 2D/2D contact strategy and novel technique for high-k dielectric integration is expected to open the path to explore the rich quantum physics in TMDs 2DEGs and 2DHGs

    Nano-Bio Hybrid Electronic Sensors for Chemical Detection and Disease Diagnostics

    Get PDF
    The need to detect low concentrations of chemical or biological targets is ubiquitous in environmental monitoring and biomedical applications. The goal of this work was to address challenges in this arena by combining nanomaterials grown via scalable techniques with chemical receptors optimized for the detection problem at hand. Advances were made in the CVD growth of graphene, carbon nanotubes and molybdenum disulfide. Field effect transistors using these materials as the channel were fabricated using methods designed to avoid contamination of the nanomaterial surfaces. These devices were used to read out electronic signatures of binding events of molecular targets in both vapor and solution phases. Single-stranded DNA functionalized graphene and carbon nanotubes were shown to be versatile receptors for a wide variety of volatile molecular targets, with characteristic responses that depended on the DNA sequence and the identity of the target molecule, observable down to part-per-billion concentrations. This technology was applied to increasingly difficult detection challenges, culminating in a study of blood plasma samples from patients with ovarian cancer. By working with large arrays of devices and studying the devices\u27 responses to pooled plasma samples and plasma samples from 24 individuals, sufficient data was collected to identify statistically robust patterns that allow samples to be classified as coming from individuals who are healthy or have either benign or malignant ovarian tumors. Solution-phase detection experiments focused on the design of surface linkers and specific receptors for medically relevant molecular targets. A non-covalent linker was used to attach a known glucose receptor to carbon nanotubes and the resulting hybrid was shown to be sensitive to glucose at the low concentrations found in saliva, opening up a potential pathway to glucose monitoring without the need for drawing blood. In separate experiments, molybdenum disulfide transistors were functionalized with a re-engineered variant of a Ό-opiod receptor, a cell membrane protein that binds opiods and regulates pain and reward signaling in the body. The resulting devices were shown to bind opiods with affinities that agree with measurements in the native state. This result could enable not only an advanced opiod sensor but moreover could be generalized into a solid-state drug testing platform, allowing the interactions of novel pharmaceuticals and their target proteins to be read out electronically. Such a system could have high throughput due to the quick measurement, scalable device fabrication and high sensitivity of the molybdenum disulfide transistor

    Nanofabrication and Characterization of Nanoelectronic Biosensors Based on Emerging Layered Semiconductors.

    Full text link
    Many important biomedical and clinical applications, such as early-stage cancer diagnosis, autoimmune disease treatment, and real-time monitoring of patients’ immune status, demand new integrated multiplexing nanoelectronic/microfluidic biosensors. These biosensors are anticipated to enable fast (minute-scale) quantification of illness-related biomarkers, unprecedented detection sensitivity, fM-level limit-of-detection (LOD), and point-of-care capability. However, these new highly desirable biosensing capabilities have not been realized yet. Atomically layered transition metal dichalcogenides (TMDCs) have gained a lot of attention because of their excellent electronic and structural properties. Especially, semiconducting TMDCs can serve as an essential complement to zero-band-gap graphene and enable novel semiconductor-related applications, such as thin-film transistors, phototransistors, and various types of sensors. More importantly, such TMDCs hold significant potential to be exploited for making new electronic biosensors and realize the highly desirable biosensing capabilities mentioned above. The research presented in this thesis sought to advance the scientific and technical knowledge for fabricating and operating new TMDC-based electronic/microfluidic-integrated biosensors and realizing rapid fM-level quantification of biomarkers. The first part (i.e., the second chapter) is mainly focused on developing a top-down nanofabrication approach for producing orderly arranged, pristine few-layer MoS2 flakes, which holds significant potential to be developed into a upscalable nanomanufacturing technology. The second part (i.e., the third-to-fifth chapters) presents a systematic study on the biosensing characteristics of the TMDC-based transistor sensors fabricated using our nanoprinting techniques. First, multiple sets of MoS2-based transistor biosensors were fabricated using our plasma-assisted nanoprinting method. Second, we studied the underlying device physics governing the response characteristics of TDMC transistor biosensors. Third, we further studied a cycle-wise method for operating MoS2/WSe2-based transistor biosensors to enable rapid, low-noise, highly specific biomolecule quantification at femtomolar levels. The presented research has leveraged the superior electronic properties of emerging layered semiconductors for biosensing applications and advances label-free biosensing techniques toward realizing fast real-time immunoassay for low-abundance biomolecule detection. Moreover, the nanofabrication approaches developed in this research can be generally utilized for making other nanoelectronic devices based on emerging 2D layered materials, and the obtained device physics knowledge is anticipated to greatly leverage the excellent electronic and structural properties of TMDCs for other relevant sensing applications.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135796/1/aquantum_1.pd

    2d Suspended Fet Technology: Overcoming Scattering Effect For Ultrasensitive Reliable Biosensor

    Get PDF
    TMDs such as MoS2 is playing an important role in the field of FETs, photodetectors, thin film transistors and efficient biosensors because of their direct band-gap, high mobility, and biocompatibility. Despite these strengths, the performance and reliability of such atomic layer are easily influenced by supporting substrate. Interaction between the supporting substrate and MoS2 implies that interface control is vital for performance of devices consisting of monolayer MoS2. In particular, the Silicon dioxide (SiO2) supporting substrate has an uneven morphology and is chemically active because of trapped environmental gases, unknown functional groups, chemical adsorbates, and charges. Thus, adding another layer of MoS2 on the top of SiO2 cannot contribute charge transport clearly, which leads to the unreliable function of every single device. To solve the interface problem, suspended 2D layer devices have been reported by wet etching silicon di oxide underneath the monolayer. Freestanding MoS2 has shown 10 times greater back gate electronic mobility than the supporting on the SiO2 substrate. However, the existing SiO2 requires hazardous chemical etchants such as hydrofluoric acid (HF), which is difficult to handle and affects the 2D film structure and purity. Secondly, freestanding MoS2 sags between the two electrodes because of the high spacing (~ 2 ”m), which makes it impossible to coat another layer such as hafnium oxide (HfO2) and antibodies on top of monolayer. Therefore, this structure impedes making top gate FET biosensors, which allows for only back gating. However, back gate mobility is far lesser than the top gate mobility which hinders making a highly sensitive FET-based biosensor because the sensitivity of a sensor depends on its mobility. In this work, CVD grown MoS2 channel material is transferred on self-assembled photolithographically patterned nano-gaps to achieve suspension and is covered with HfO2 to eliminate the direct functionalization of channel material. These nano-gap arrays provide mechanical strength to the monolayer and do not allow the supporting substrate to touch after coating another thin insulating layer as well as linkers/antibodies. HfO2 can be easily functionalized by silane-based linkers and antibodies (E-coli antibodies) to bring variation to the suspended 2D material by targeting a charged biomolecule (E-coli). In addition, termination of the supporting substrate leads to decrement of subthreshold swing which is inversly proportional to the sensitivity of the FET biosensor. The proposed FET biosensor has the capability to detect one molecule because of its single atomic layer as a channel material, its scalability due to the involvement of optical photolithography, and its fast response because of higher mobility

    The Electrical Transport Study Of Graphene Nanoribbons And 2d Materials Beyond Graphene

    Get PDF
    The electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon (GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm2 V-1 s-1 and an intrinsic bandgap was reported in this study. The experimentally derived bandgap is in quantitative agreement with the results of our electronic-structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the bandgap in non-armchair GNRs is partially due to the magnetic zigzag edges. In addition, electrical transport measurements show that current-annealing effectively removes the impurities on the suspended graphene nanoribbons, uncovering the intrinsic ambipolar transfer characteristic of graphene. Further increasing the annealing current creates a narrow constriction in the ribbon, leading to the formation of a large band-gap and subsequent high on/off ratio (which can exceed 104). This work shows for the first time that ambipolar field effect characteristics and high on/off ratios at room temperature can be achieved in relatively wide graphene nanoribbon (15 nm ~50 nm) by controlled current annealing. Moreover, a simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. Single-layer and few-layer graphene nanoribbons with a width ranging from sub-10 nm to tens of nm and length ranging from hundreds of nm to 1 ĂŹm were routinely observed. Electrical transport properties of individual graphene nanoribbons were measured in both the back-gate and polymer-electrolyte top-gate configurations. The mobility of the graphene nanoribbons was found to be over an order of magnitude higher when measured in the latter than in the former configuration (without the polymer electrolyte), which can be attributed to the screening of the charged impurities by the counter-ions in the polymer electrolyte. This finding suggests that the charge transport in these solution-produced graphene nanoribbons is largely limited by charged impurity scattering. We also report electrical characterization of monolayer molybdenum disulfide (MoS2) devices using a thin layer of polymer electrolyte consisting of poly (ethylene oxide) (PEO) and lithium perchlorate (LiClO4) as both a contact-barrier reducer and channel mobility booster. We find that bare MoS2 devices (without polymer electrolyte) fabricated on Si/SiO2 have low channel mobility and large contact resistance, both of which severely limit the field-effect mobility of the devices. A thin layer of PEO/ LiClO4 deposited on top of the devices not only substantially reduces the contact resistance but also boost the channel mobility, leading up to three-orders-of-magnitude enhancement of the field-effect mobility of the device. When the polymer electrolyte is used as a gate medium, the MoS2 field-effect transistors exhibit excellent device characteristics such as a near ideal subthreshold swing and an on/off ratio of 106 as a result of the strong gate-channel coupling. In addition, the ambipolar field-effect transistors of atomically thin MoS2 with an ionic liquid gate were realized in this study. A record high On-Off current ratio greater than 106 is achieved for hole transport in a bilayer MoS2 transistor, while that for electron transport exceeds 107. The scaled transconductance of the device reaches 11.8 ”S/”m at a drain-source voltage of 1V, which is an order of magnitude large than that observed in MoS2 transistors with a high-ĂȘ top-gate dielectric. A near ideal subthreshold swing of 47mV/dec at 230 K is also achieved in the bilayer MoS2 device
    • 

    corecore