7 research outputs found

    Task Activity Vectors: A Novel Metric for Temperature-Aware and Energy-Efficient Scheduling

    Get PDF
    This thesis introduces the abstraction of the task activity vector to characterize applications by the processor resources they utilize. Based on activity vectors, the thesis introduces scheduling policies for improving the temperature distribution on the processor chip and for increasing energy efficiency by reducing the contention for shared resources of multicore and multithreaded processors

    Power-constrained aware and latency-aware microarchitectural optimizations in many-core processors

    Get PDF
    As the transistor budgets outpace the power envelope (the power-wall issue), new architectural and microarchitectural techniques are needed to improve, or at least maintain, the power efficiency of next-generation processors. Run-time adaptation, including core, cache and DVFS adaptations, has recently emerged as a promising area to keep the pace for acceptable power efficiency. However, none of the adaptation techniques proposed so far is able to provide good results when we consider the stringent power budgets that will be common in the next decades, so new techniques that attack the problem from several fronts using different specialized mechanisms are necessary. The combination of different power management mechanisms, however, bring extra levels of complexity, since other factors such as workload behavior and run-time conditions must also be considered to properly allocate power among cores and threads. To address the power issue, this thesis first proposes Chrysso, an integrated and scalable model-driven power management that quickly selects the best combination of adaptation methods out of different core and uncore micro-architecture adaptations, per-core DVFS, or any combination thereof. Chrysso can quickly search the adaptation space by making performance/power projections to identify Pareto-optimal configurations, effectively pruning the search space. Chrysso achieves 1.9x better chip performance over core-level gating for multi-programmed workloads, and 1.5x higher performance for multi-threaded workloads. Most existing power management schemes use a centralized approach to regulate power dissipation. Unfortunately, the complexity and overhead of centralized power management increases significantly with core count rendering it in-viable at fine-grain time slices. The work leverages a two-tier hierarchical power manager. This solution is highly scalable with low overhead on a tiled many-core architecture with shared LLC and per-tile DVFS at fine-grain time slices. The global power is first distributed across tiles using GPM and then within a tile (in parallel across all tiles). Additionally, this work also proposes DVFS and cache-aware thread migration (DCTM) to ensure optimum per-tile co-scheduling of compatible threads at runtime over the two-tier hierarchical power manager. DCTM outperforms existing solutions by up to 12% on adaptive many-core tile processor. With the advancements in the core micro-architectural techniques and technology scaling, the performance gap between the computational component and memory component is increasing significantly (the memory-wall issue). To bridge this gap, the architecture community is pushing forward towards multi-core architecture with on-die near-memory DRAM cache memory (faster than conventional DRAM). Gigascale DRAM Caches poses a problem of how to efficiently manage the tags. The Tags-in-DRAM designs aims at efficiently co-locate tags with data, but it still suffer from high latency especially in multi-way associativity. The thesis finally proposes Tag Cache mechanism, an on-chip distributed tag caching mechanism with limited space and latency overhead to bypass the tag read operation in multi-way DRAM Caches, thereby reducing hit latency. Each Tag Cache, stored in L2, stores tag information of the most recently used DRAM Cache ways. The Tag Cache is able to exploit temporal locality of the DRAM Cache, thereby contributing to on average 46% of the DRAM Cache hits.A mesura que el consum dels transistors supera el nivell de potència desitjable es necessiten noves tècniques arquitectòniques i microarquitectòniques per millorar, o almenys mantenir, l'eficiència energètica dels processadors de les pròximes generacions. L'adaptació en temps d'execució, tant de nuclis com de les cachés, així com també adaptacions DVFS són idees que han sorgit recentment que fan preveure que sigui un àrea prometedora per mantenir un ritme d'eficiència energètica acceptable. Tanmateix, cap de les tècniques d'adaptació proposades fins ara és capaç d'oferir bons resultats si tenim en compte les restriccions estrictes de potència que seran comuns a les pròximes dècades. És convenient definir noves tècniques que ataquin el problema des de diversos fronts utilitzant diferents mecanismes especialitzats. La combinació de diferents mecanismes de gestió d'energia porta aparellada nivells addicionals de complexitat, ja que altres factors com ara el comportament de la càrrega de treball així com condicions específiques de temps d'execució també han de ser considerats per assignar adequadament la potència entre els nuclis del sistema computador. Per tractar el tema de la potència, aquesta tesi proposa en primer lloc Chrysso, una administració d'energia integrada i escalable que selecciona ràpidament la millor combinació entre diferents adaptacions microarquitectòniques. Chrysso pot buscar ràpidament l'adaptació adequada al fer projeccions òptimes de rendiment i potència basades en configuracions de Pareto, permetent així reduir de manera efectiva l'espai de cerca. Chrysso arriba a un rendiment de 1,9 sobre tècniques convencionals d'inhibició de portes amb una càrrega d'aplicacions seqüencials; i un rendiment de 1,5 quan les aplicacions corresponen a programes parla·lels. La majoria dels sistemes de gestió d'energia existents utilitzen un enfocament centralitzat per regular la dissipació d'energia. Malauradament, la complexitat i el temps d'administració s'incrementen significativament amb una gran quantitat de nuclis. En aquest treball es defineix un gestor jeràrquic de potència basat en dos nivells. Aquesta solució és altament escalable amb baix cost operatiu en una arquitectura de múltiples nuclis integrats en clústers, amb memòria caché de darrer nivell compartida a nivell de cluster, i DVFS establert en intervals de temps de gra fi a nivell de clúster. La potència global es distribueix en primer lloc a través dels clústers utilitzant GPM i després es distribueix dins un clúster (en paral·lel si es consideren tots els clústers). A més, aquest treball també proposa DVFS i migració de fils conscient de la memòria caché (DCTM) que garanteix una òptima distribució de tasques entre els nuclis. DCTM supera les solucions existents fins a un 12%. Amb els avenços en la tecnologia i les tècniques de micro-arquitectura de nuclis, la diferència de rendiment entre el component computacional i la memòria està augmentant significativament. Per omplir aquest buit, s'està avançant cap a arquitectures de múltiples nuclis amb memòries caché integrades basades en DRAM. Aquestes memòries caché DRAM a gran escala plantegen el problema de com gestionar de forma eficaç les etiquetes. Els dissenys de cachés amb dades i etiquetes juntes són un primer pas, però encara pateixen per tenir una alta latència, especialment en cachés amb un grau alt d'associativitat. En aquesta tesi es proposa l'estudi d'una tècnica anomenada Tag Cache, un mecanisme distribuït d'emmagatzematge d'etiquetes, que redueix la latència de les operacions de lectura d'etiquetes en les memòries caché DRAM. Cada Tag Cache, que resideix a L2, emmagatzema la informació de les vies que s'han accedit recentment de les memòries caché DRAM. D'aquesta manera es pot aprofitar la localitat temporal d'una caché DRAM, fet que contribueix en promig en un 46% dels encerts en les caché DRAM

    Application-specific thermal management of computer systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Heterogeneous processor composition: metrics and methods

    Get PDF
    Heterogeneous processors intended for mobile devices are composed of a number of different CPU cores that enable the processor to optimize performance under strict power limits that vary over time. Design space exploration techniques can be used to discover a candidate set of potential cores that could be implemented on a heterogeneous processor. However, candidate sets contain far more cores than can feasibly be implemented. Heterogeneous processor composition therefore requires solutions to the selection problem and the evaluation problem. Cores must be selected from the candidate set, and these cores must be shown to be quantitatively superior to alternative selections. The qualitative criterion for a selection of cores is diversity. A diverse set of heterogeneous cores allows a processor to execute tasks with varying dynamic behaviors at a range of power and performance levels that are appropriate for conditions during runtime. This thesis presents a detailed description of the selection and evaluation problems, and establishes a theoretical framework for reasoning about the runtime behavior of power-limited, heterogeneous processors. The evaluation problem is specifically concerned with evaluating the collective attributes of selections of cores rather than evaluating the features of individual cores. A suite of metrics is defined to address the evaluation problem. The metrics quantify considerations that could otherwise only be evaluated subjectively. The selection problem is addressed with an iterative, diversity-preserving algorithm that emphasizes the flexibility available to programs at runtime. The algorithm includes facilities for guiding the selection process with information from an expert, when available. Three variations on the selection algorithm are defined. A thorough analysis of the proposed selection algorithm is presented using data from a large-scale simulation involving 33 benchmarks and 3000 core types. The three variations of the algorithm are compared to each other and to current, state-of-the-art selection techniques. The analysis serves as both an evaluation of the proposed algorithm as well as a case study of the metrics

    Proceedings of the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008

    Get PDF
    This volume contains full papers presented at the 10th International Chemical and Biological Engineering Conference - CHEMPOR 2008, held in Braga, Portugal, between September 4th and 6th, 2008.FC
    corecore