12 research outputs found

    IMPROVING QoS OF VoWLAN VIA CROSS-LAYER BASED ADAPTIVE APPROACH

    Get PDF
    Voice over Internet Protocol (VoIP) is a technology that allows the transmission of voice packets over Internet Protocol (IP). Recently, the integration of VoIP and Wireless Local Area Network (WLAN), and known as Voice over WLAN (VoWLAN), has become popular driven by the mobility requirements ofusers, as well as by factor of its tangible cost effectiveness. However, WLAN network architecture was primarily designed to support the transmission of data, and not for voice traffic, which makes it lack ofproviding the stringent Quality ofService (QoS) for VoIP applications. On the other hand, WLAN operates based on IEEE 802.11 standards that support Link Adaptive (LA) technique. However, LA leads to having a network with multi-rate transmissions that causes network bandwidth variation, which hence degrades the voice quality. Therefore, it is important to develop an algorithm that would be able to overcome the negative effect of the multi-rate issue on VoIP quality. Hence, the main goal ofthis research work is to develop an agent that utilizes IP protocols by applying a Cross-Layering approach to eliminate the above-mentioned negative effect. This could be expected from the interaction between Medium Access Control (MAC) layer and Application layer, where the proposed agent adapts the voice packet size at the Application layer according to the change of MAC transmission data rate to avoid network congestion from happening. The agent also monitors the quality of conversations from the periodically generated Real Time Control Protocol (RTCP) reports. If voice quality degradation is detected, then the agent performs further rate adaptation to improve the quality. The agent performance has been evaluated by carrying out an extensive series ofsimulation using OPNET Modeler. The obtained results of different performance parameters are presented, comparing the performance ofVoWLAN that used the proposed agent to that ofthe standard network without agent. The results ofall measured quality parameters hav

    VOIP WITH ADAPTIVE RATE IN MULTI- TRANSMISSION RATE WIRELESS LANS

    Get PDF
    “Voice over Internet Protocol (VoIP)” is a popular communication technology that plays a vital role in term of cost reduction and flexibility. However, like any emerging technology, there are still some issues with VoIP, namely providing good Quality of Service (QoS), capacity consideration and providing security. This study focuses on the QoS issue of VoIP, specifically in “Wireless Local Area Networks (WLAN)”. IEEE 802.11 is the most popular standard of wireless LANs and it offers different transmission rates for wireless channels. Different transmission rates are associated with varying available bandwidth that shall influence the transmission of VoIP traffic

    IMPROVING QoS OF VoWLAN VIA CROSS-LAYER BASED ADAPTIVE APPROACH

    Get PDF
    Voice over Internet Protocol (VoIP) is a technology that allows the transmission of voice packets over Internet Protocol (IP). Recently, the integration of VoIP and Wireless Local Area Network (WLAN), and known as Voice over WLAN (VoWLAN), has become popular driven by the mobility requirements ofusers, as well as by factor of its tangible cost effectiveness. However, WLAN network architecture was primarily designed to support the transmission of data, and not for voice traffic, which makes it lack ofproviding the stringent Quality ofService (QoS) for VoIP applications. On the other hand, WLAN operates based on IEEE 802.11 standards that support Link Adaptive (LA) technique. However, LA leads to having a network with multi-rate transmissions that causes network bandwidth variation, which hence degrades the voice quality. Therefore, it is important to develop an algorithm that would be able to overcome the negative effect of the multi-rate issue on VoIP quality. Hence, the main goal ofthis research work is to develop an agent that utilizes IP protocols by applying a Cross-Layering approach to eliminate the above-mentioned negative effect. This could be expected from the interaction between Medium Access Control (MAC) layer and Application layer, where the proposed agent adapts the voice packet size at the Application layer according to the change of MAC transmission data rate to avoid network congestion from happening. The agent also monitors the quality of conversations from the periodically generated Real Time Control Protocol (RTCP) reports. If voice quality degradation is detected, then the agent performs further rate adaptation to improve the quality. The agent performance has been evaluated by carrying out an extensive series ofsimulation using OPNET Modeler. The obtained results of different performance parameters are presented, comparing the performance ofVoWLAN that used the proposed agent to that ofthe standard network without agent. The results ofall measured quality parameters hav

    VOIP WITH ADAPTIVE RATE IN MULTI- TRANSMISSION RATE WIRELESS LANS

    Get PDF
    “Voice over Internet Protocol (VoIP)” is a popular communication technology that plays a vital role in term of cost reduction and flexibility. However, like any emerging technology, there are still some issues with VoIP, namely providing good Quality of Service (QoS), capacity consideration and providing security. This study focuses on the QoS issue of VoIP, specifically in “Wireless Local Area Networks (WLAN)”. IEEE 802.11 is the most popular standard of wireless LANs and it offers different transmission rates for wireless channels. Different transmission rates are associated with varying available bandwidth that shall influence the transmission of VoIP traffic

    SIP-based proactive and adaptive mobility management framework for heterogeneous networks

    Get PDF
    Abstract In this paper, we present and evaluate the performance of a mobility management system called the Proactive and Adaptive Handover (PAHO) system. PAHO is an application-level approach that uses SIP to manage client-initiated connection handoff across heterogeneous networks based on the IEEE 802.21 framework with designated user/configuration policy. Unlike conventional systems which make sub-optimal decision when managing connection handoff due to limited awareness of the relevant context for the application/service being delivered, PAHO defines proper interface to interact with the application as to determine when and to where the handoff and/or codec switching should take place in the event of network performance degradation. The results showed that using the PAHO approach on an audio/video conferencing session helps reducing the overall handover delay from 10.766 s (on non-PAHO system) down to at least 288 ms, and slowing down the degradation of MOS value throughout the entire experiment in the event of signal degradation as well as network congestion. It is also shown that load balancing among the access points (AP) could be achieved with an improved Information Server (IS). r 2007 Elsevier Ltd. All rights reserved

    Optimización en el despliegue de servicios de Voz sobre IP (VoIP) sobre redes WiFi con restricciones de calidad de servicio

    Get PDF
    Las tecnologías de Voz sobre IP (VoIP) han permitido el despliegue de nuevos servicios de voz a través de Internet durante las dos últimas décadas. Por otro lado, las redes inalámbricas de área local (WLAN) basadas en el estándar IEEE 802.11 (i.e., WiFi) han experimentado un crecimiento de popularidad debido a su bajo coste y flexibilidad. Sin embargo, el despliegue de comunicaciones de VoIP con garantías de calidad sobre redes IEEE 802.11 implica una serie de dificultades (i.e., los paquetes pueden sufrir pérdidas, colisiones, y retardos variables) que no han sido satisfactoriamente resueltas con las técnicas y modelos disponibles en la actualidad. En esta tesis se desarrolla un nuevo modelo analítico de la sub-capa MAC de IEEE 802.11 que permite estimar la calidad y consumo energético de las conversaciones en un escenario realista de VoIP sobre WiFi (VoWiFi). Además, el modelo anterior se utiliza para plantear y resolver dos nuevas aplicaciones de despliegue y optimización de servicios VoWiFi: (a) el despliegue de vehículos aéreos no tripulados (UAVs) para proveer de un servicio de VoWiFi con garantías de calidad a un conjunto de usuarios y, (b) un nuevo mecanismo de control de admisión de llamadas en la red WiFi corporativa y unifica el acceso al servicio tanto para usuarios de terminales cableados como inalámbricos. Validamos el modelo analítico propuesto frente a simulaciones realizadas con el simulador de red ns-3. Los resultados muestran la utilidad del modelo propuesto para predecir las prestaciones (e.g., retardo, pérdidas) y el consumo energético en la tarjeta de red cuando se transmiten flujos de voz sobre IEEE 802.11 en condiciones no ideales. Esta capacidad de predicción ha sido clave en las propuestas realizadas de nuevas aplicaciones. En el caso del despliegue de drones, nos ha permitido definir un nuevo problema de posicionamiento inicial que puede resultar muy práctico en situaciones de rescate al aire libre. En el caso del control de admisión en entornos corporativos, el modelo nos ha permitido predecir la capacidad máxima de flujos de voz que puede ser admitida en la organización para garantizar calidad a las conversaciones existentes. Usando esta capacidad, hemos planteado un algoritmo nuevo que puede ser utilizado para unificar el control de acceso para usuarios WiFi y usuarios de terminales cableados y que aumenta el número de usuarios concurrentes respecto a los algoritmos existentes.Voice over IP (VoIP) technologies have enabled the deployment of new voice services over the Internet during the last two decades. Meanwhile, wireless local area networks (WLAN) based on the IEEE 802.11 standard (i.e., WiFi) have grown in popularity due to their low cost and flexibility. However, the deployment of quality-guaranteed VoIP communications over IEEE 802.11 networks implies a series of technical difficulties (i.e. lost packets, collisions, and delays) that have not been successfully addressed by the techniques and models available today. In this thesis, we develop a new analytical model for the IEEE 802.11 MAC sub-layer that allows one to estimate quality and energy consumption in a realistic VoIP over WiFi (VoWiFi) scenario. In addition, the previous model is used to propose and solve two new applications for the deployment and optimization of VoWiFi services: (a) deploying unmanned aerial vehicles (UAVs) to provide a VoWiFi service under guaranteed quality to a group of ground users and, (b) a new call admission control mechanism for WiFi corporate networks, which unifies the access to the voice service for both wired and wireless terminals. We validate the proposed analytical model against simulation results obtained with the ns-3 network simulator. Results show the accuracy of the proposed model for the prediction of the performance (e.g. delay, losses) and energy consumption of network interfaces when voice flows are transmitted over IEEE 802.11 under non-ideal conditions. This prediction capability has been a key component of the two VoWiFi applications developed. In the UAV deployment, it has allowed us to define a new initial positioning problem that can be very practical in outdoor rescue situations. Regarding admission control in corporate environments, the model has allowed us to predict the maximum capacity of voice flows that can be admitted in the organization to guarantee quality to existing conversations. Using this capability, we have proposed a new algorithm that can be used to unify access control for wireless and wired users, and that increases the number of concurrent users with respect to existing algorithm

    Quality of Service optimisation framework for Next Generation Networks

    Get PDF
    Within recent years, the concept of Next Generation Networks (NGN) has become widely accepted within the telecommunication area, in parallel with the migration of telecommunication networks from traditional circuit-switched technologies such as ISDN (Integrated Services Digital Network) towards packet-switched NGN. In this context, SIP (Session Initiation Protocol), originally developed for Internet use only, has emerged as the major signalling protocol for multimedia sessions in IP (Internet Protocol) based NGN. One of the traditional limitations of IP when faced with the challenges of real-time communications is the lack of quality support at the network layer. In line with NGN specification work, international standardisation bodies have defined a sophisticated QoS (Quality of Service) architecture for NGN, controlling IP transport resources and conventional IP QoS mechanisms through centralised higher layer network elements via cross-layer signalling. Being able to centrally control QoS conditions for any media session in NGN without the imperative of a cross-layer approach would result in a feasible and less complex NGN architecture. Especially the demand for additional network elements would be decreased, resulting in the reduction of system and operational costs in both, service and transport infrastructure. This thesis proposes a novel framework for QoS optimisation for media sessions in SIP-based NGN without the need for cross-layer signalling. One key contribution of the framework is the approach to identify and logically group media sessions that encounter similar QoS conditions, which is performed by applying pattern recognition and clustering techniques. Based on this novel methodology, the framework provides functions and mechanisms for comprehensive resource-saving QoS estimation, adaptation of QoS conditions, and support of Call Admission Control. The framework can be integrated with any arbitrary SIP-IP-based real-time communication infrastructure, since it does not require access to any particular QoS control or monitoring functionalities provided within the IP transport network. The proposed framework concept has been deployed and validated in a prototypical simulation environment. Simulation results show MOS (Mean Opinion Score) improvement rates between 53 and 66 percent without any active control of transport network resources. Overall, the proposed framework comes as an effective concept for central controlled QoS optimisation in NGN without the need for cross-layer signalling. As such, by either being run stand-alone or combined with conventional QoS control mechanisms, the framework provides a comprehensive basis for both the reduction of complexity and mitigation of issues coming along with QoS provision in NGN

    Contribution to quality of user experience provision over wireless networks

    Get PDF
    The widespread expansion of wireless networks has brought new attractive possibilities to end users. In addition to the mobility capabilities provided by unwired devices, it is worth remarking the easy configuration process that a user has to follow to gain connectivity through a wireless network. Furthermore, the increasing bandwidth provided by the IEEE 802.11 family has made possible accessing to high-demanding services such as multimedia communications. Multimedia traffic has unique characteristics that make it greatly vulnerable against network impairments, such as packet losses, delay, or jitter. Voice over IP (VoIP) communications, video-conference, video-streaming, etc., are examples of these high-demanding services that need to meet very strict requirements in order to be served with acceptable levels of quality. Accomplishing these tough requirements will become extremely important during the next years, taking into account that consumer video traffic will be the predominant traffic in the Internet during the next years. In wired systems, these requirements are achieved by using Quality of Service (QoS) techniques, such as Differentiated Services (DiffServ), traffic engineering, etc. However, employing these methodologies in wireless networks is not that simple as many other factors impact on the quality of the provided service, e.g., fading, interferences, etc. Focusing on the IEEE 802.11g standard, which is the most extended technology for Wireless Local Area Networks (WLANs), it defines two different architecture schemes. On one hand, the infrastructure mode consists of a central point, which manages the network, assuming network controlling tasks such as IP assignment, routing, accessing security, etc. The rest of the nodes composing the network act as hosts, i.e., they send and receive traffic through the central point. On the other hand, the IEEE 802.11 ad-hoc configuration mode is less extended than the infrastructure one. Under this scheme, there is not a central point in the network, but all the nodes composing the network assume both host and router roles, which permits the quick deployment of a network without a pre-existent infrastructure. This type of networks, so called Mobile Ad-hoc NETworks (MANETs), presents interesting characteristics for situations when the fast deployment of a communication system is needed, e.g., tactics networks, disaster events, or temporary networks. The benefits provided by MANETs are varied, including high mobility possibilities provided to the nodes, network coverage extension, or network reliability avoiding single points of failure. The dynamic nature of these networks makes the nodes to react to topology changes as fast as possible. Moreover, as aforementioned, the transmission of multimedia traffic entails real-time constraints, necessary to provide these services with acceptable levels of quality. For those reasons, efficient routing protocols are needed, capable of providing enough reliability to the network and with the minimum impact to the quality of the service flowing through the nodes. Regarding quality measurements, the current trend is estimating what the end user actually perceives when consuming the service. This paradigm is called Quality of user Experience (QoE) and differs from the traditional Quality of Service (QoS) approach in the human perspective given to quality estimations. In order to measure the subjective opinion that a user has about a given service, different approaches can be taken. The most accurate methodology is performing subjective tests in which a panel of human testers rates the quality of the service under evaluation. This approach returns a quality score, so-called Mean Opinion Score (MOS), for the considered service in a scale 1 - 5. This methodology presents several drawbacks such as its high expenses and the impossibility of performing tests at real time. For those reasons, several mathematical models have been presented in order to provide an estimation of the QoE (MOS) reached by different multimedia services In this thesis, the focus is on evaluating and understanding the multimedia-content transmission-process in wireless networks from a QoE perspective. To this end, firstly, the QoE paradigm is explored aiming at understanding how to evaluate the quality of a given multimedia service. Then, the influence of the impairments introduced by the wireless transmission channel on the multimedia communications is analyzed. Besides, the functioning of different WLAN schemes in order to test their suitability to support highly demanding traffic such as the multimedia transmission is evaluated. Finally, as the main contribution of this thesis, new mechanisms or strategies to improve the quality of multimedia services distributed over IEEE 802.11 networks are presented. Concretely, the distribution of multimedia services over ad-hoc networks is deeply studied. Thus, a novel opportunistic routing protocol, so-called JOKER (auto-adJustable Opportunistic acK/timEr-based Routing) is presented. This proposal permits better support to multimedia services while reducing the energy consumption in comparison with the standard ad-hoc routing protocols.Universidad Politécnica de CartagenaPrograma Oficial de Doctorado en Tecnologías de la Información y Comunicacione

    Distributed Cooperative Framework and Algorithms for wireless Network Performance Optimization

    Get PDF
    In Wireless Local Access Networks (WLANs), the Medium Access Control (MAC) protocol is the primary element that determines the efficiency of sharing the limited communication bandwidth of the wireless channel. IEEE 802.11 MAC uses the contention-based Distributed Coordination Function (DCF) as a fundamental medium access mechanism. However, the dynamic nature of the wireless environment creates mobility challenges of maintaining maximum channel capacity, of obtaining optimal throughput and latency, and of retaining good security in a distributed wireless network. This dissertation first introduces a set of parameters to characterize the medium status and radio environment, and a mechanism for mobile devices to exchange measurements in order to obtain broad and comprehensive knowledge of the wireless environment. Then the dissertation proposes a distributed cooperative wireless architecture and framework, and three cooperative algorithms to optimize wireless network performance. The cooperative algorithms allow wireless devices to cooperatively adjust configurations and optimize operations based on the characteristics of the environment. The first algorithm adaptively adjusts the contention window size to reduce the number of collisions as the number of mobile devices increases, in order to reach maximum channel utilization. However, if a channel reaches the saturated state, the throughput per user decreases significantly. Therefore, the second algorithm discussed in this dissertation is to select the best Access Point (AP) in overlapped AP coverage areas to balance network loads and maximally utilize the network capacity. When the mobile device transitions from one AP to another AP, it may take milliseconds to seconds due to required re-association and re-authentication with the new AP. Thus, the third cooperative algorithm optimizes the device transition to provide an acceptable balance of latency and security. The corresponding simulation or experiment results that demonstrate a significant improvement of wireless network performance are explained for each algorithm. Forgery and confidentiality are major concerns for distributed radio resource measurement and cooperation. Thus, this dissertation concludes with an analysis of security threats to radio resource measurement and cooperation, and proposes an action frame protection scheme to ensure secure distributed cooperative wireless networks

    Wi-Fi Enabled Healthcare

    Get PDF
    Focusing on its recent proliferation in hospital systems, Wi-Fi Enabled Healthcare explains how Wi-Fi is transforming clinical work flows and infusing new life into the types of mobile devices being implemented in hospitals. Drawing on first-hand experiences from one of the largest healthcare systems in the United States, it covers the key areas associated with wireless network design, security, and support. Reporting on cutting-edge developments and emerging standards in Wi-Fi technologies, the book explores security implications for each device type. It covers real-time location services and emerging trends in cloud-based wireless architecture. It also outlines several options and design consideration for employee wireless coverage, voice over wireless (including smart phones), mobile medical devices, and wireless guest services. This book presents authoritative insight into the challenges that exist in adding Wi-Fi within a healthcare setting. It explores several solutions in each space along with design considerations and pros and cons. It also supplies an in-depth look at voice over wireless, mobile medical devices, and wireless guest services. The authors provide readers with the technical knowhow required to ensure their systems provide the reliable, end-to-end communications necessary to surmount today’s challenges and capitalize on new opportunities. The shared experience and lessons learned provide essential guidance for large and small healthcare organizations in the United States and around the world. This book is an ideal reference for network design engineers and high-level hospital executives that are thinking about adding or improving upon Wi-Fi in their hospitals or hospital systems
    corecore