367 research outputs found

    Addressing stability issues in mediated complex contract negotiations for constraint-based, non-monotonic utility spaces

    Get PDF
    Negotiating contracts with multiple interdependent issues may yield non- monotonic, highly uncorrelated preference spaces for the participating agents. These scenarios are specially challenging because the complexity of the agents’ utility functions makes traditional negotiation mechanisms not applicable. There is a number of recent research lines addressing complex negotiations in uncorrelated utility spaces. However, most of them focus on overcoming the problems imposed by the complexity of the scenario, without analyzing the potential consequences of the strategic behavior of the negotiating agents in the models they propose. Analyzing the dynamics of the negotiation process when agents with different strategies interact is necessary to apply these models to real, competitive environments. Specially problematic are high price of anarchy situations, which imply that individual rationality drives the agents towards strategies which yield low individual and social welfares. In scenarios involving highly uncorrelated utility spaces, “low social welfare” usually means that the negotiations fail, and therefore high price of anarchy situations should be avoided in the negotiation mechanisms. In our previous work, we proposed an auction-based negotiation model designed for negotiations about complex contracts when highly uncorrelated, constraint-based utility spaces are involved. This paper performs a strategy analysis of this model, revealing that the approach raises stability concerns, leading to situations with a high (or even infinite) price of anarchy. In addition, a set of techniques to solve this problem are proposed, and an experimental evaluation is performed to validate the adequacy of the proposed approaches to improve the strategic stability of the negotiation process. Finally, incentive-compatibility of the model is studied.Spain. Ministerio de Educación y Ciencia (grant TIN2008-06739-C04-04

    Social Welfare

    Get PDF
    "Social Welfare" offers, for the first time, a wide-ranging, internationally-focused selection of cutting-edge work from leading academics. Its interdisciplinary approach and comparative perspective promote examination of the most pressing social welfare issues of the day. The book aims to clarify some of the ambiguity around the term, discuss the pros and cons of privatization, present a range of social welfare paradoxes and innovations, and establish a clear set of economic frameworks with which to understand the conditions under which the change in social welfare can be obtained

    What to bid and when to stop

    No full text
    Negotiation is an important activity in human society, and is studied by various disciplines, ranging from economics and game theory, to electronic commerce, social psychology, and artificial intelligence. Traditionally, negotiation is a necessary, but also time-consuming and expensive activity. Therefore, in the last decades there has been a large interest in the automation of negotiation, for example in the setting of e-commerce. This interest is fueled by the promise of automated agents eventually being able to negotiate on behalf of human negotiators.Every year, automated negotiation agents are improving in various ways, and there is now a large body of negotiation strategies available, all with their unique strengths and weaknesses. For example, some agents are able to predict the opponent's preferences very well, while others focus more on having a sophisticated bidding strategy. The problem however, is that there is little incremental improvement in agent design, as the agents are tested in varying negotiation settings, using a diverse set of performance measures. This makes it very difficult to meaningfully compare the agents, let alone their underlying techniques. As a result, we lack a reliable way to pinpoint the most effective components in a negotiating agent.There are two major advantages of distinguishing between the different components of a negotiating agent's strategy: first, it allows the study of the behavior and performance of the components in isolation. For example, it becomes possible to compare the preference learning component of all agents, and to identify the best among them. Second, we can proceed to mix and match different components to create new negotiation strategies., e.g.: replacing the preference learning technique of an agent and then examining whether this makes a difference. Such a procedure enables us to combine the individual components to systematically explore the space of possible negotiation strategies.To develop a compositional approach to evaluate and combine the components, we identify structure in most agent designs by introducing the BOA architecture, in which we can develop and integrate the different components of a negotiating agent. We identify three main components of a general negotiation strategy; namely a bidding strategy (B), possibly an opponent model (O), and an acceptance strategy (A). The bidding strategy considers what concessions it deems appropriate given its own preferences, and takes the opponent into account by using an opponent model. The acceptance strategy decides whether offers proposed by the opponent should be accepted.The BOA architecture is integrated into a generic negotiation environment called Genius, which is a software environment for designing and evaluating negotiation strategies. To explore the negotiation strategy space of the negotiation research community, we amend the Genius repository with various existing agents and scenarios from literature. Additionally, we organize a yearly international negotiation competition (ANAC) to harvest even more strategies and scenarios. ANAC also acts as an evaluation tool for negotiation strategies, and encourages the design of negotiation strategies and scenarios.We re-implement agents from literature and ANAC and decouple them to fit into the BOA architecture without introducing any changes in their behavior. For each of the three components, we manage to find and analyze the best ones for specific cases, as described below. We show that the BOA framework leads to significant improvements in agent design by wining ANAC 2013, which had 19 participating teams from 8 international institutions, with an agent that is designed using the BOA framework and is informed by a preliminary analysis of the different components.In every negotiation, one of the negotiating parties must accept an offer to reach an agreement. Therefore, it is important that a negotiator employs a proficient mechanism to decide under which conditions to accept. When contemplating whether to accept an offer, the agent is faced with the acceptance dilemma: accepting the offer may be suboptimal, as better offers may still be presented before time runs out. On the other hand, accepting too late may prevent an agreement from being reached, resulting in a break off with no gain for either party. We classify and compare state-of-the-art generic acceptance conditions. We propose new acceptance strategies and we demonstrate that they outperform the other conditions. We also provide insight into why some conditions work better than others and investigate correlations between the properties of the negotiation scenario and the efficacy of acceptance conditions.Later, we adopt a more principled approach by applying optimal stopping theory to calculate the optimal decision on the acceptance of an offer. We approach the decision of whether to accept as a sequential decision problem, by modeling the bids received as a stochastic process. We determine the optimal acceptance policies for particular opponent classes and we present an approach to estimate the expected range of offers when the type of opponent is unknown. We show that the proposed approach is able to find the optimal time to accept, and improves upon all existing acceptance strategies.Another principal component of a negotiating agent's strategy is its ability to take the opponent's preferences into account. The quality of an opponent model can be measured in two different ways. One is to use the agent's performance as a benchmark for the model's quality. We evaluate and compare the performance of a selection of state-of-the-art opponent modeling techniques in negotiation. We provide an overview of the factors influencing the quality of a model and we analyze how the performance of opponent models depends on the negotiation setting. We identify a class of simple and surprisingly effective opponent modeling techniques that did not receive much previous attention in literature.The other way to measure the quality of an opponent model is to directly evaluate its accuracy by using similarity measures. We review all methods to measure the accuracy of an opponent model and we then analyze how changes in accuracy translate into performance differences. Moreover, we pinpoint the best predictors for good performance. This leads to new insights concerning how to construct an opponent model, and what we need to measure when optimizing performance.Finally, we take two different approaches to gain more insight into effective bidding strategies. We present a new classification method for negotiation strategies, based on their pattern of concession making against different kinds of opponents. We apply this technique to classify some well-known negotiating strategies, and we formulate guidelines on how agents should bid in order to be successful, which gives insight into the bidding strategy space of negotiating agents. Furthermore, we apply optimal stopping theory again, this time to find the concessions that maximize utility for the bidder against particular opponents. We show there is an interesting connection between optimal bidding and optimal acceptance strategies, in the sense that they are mirrored versions of each other.Lastly, after analyzing all components separately, we put the pieces back together again. We take all BOA components accumulated so far, including the best ones, and combine them all together to explore the space of negotiation strategies.We compute the contribution of each component to the overall negotiation result, and we study the interaction between components. We find that combining the best agent components indeed makes the strongest agents. This shows that the component-based view of the BOA architecture not only provides a useful basis for developing negotiating agents but also provides a useful analytical tool. By varying the BOA components we are able to demonstrate the contribution of each component to the negotiation result, and thus analyze the significance of each. The bidding strategy is by far the most important to consider, followed by the acceptance conditions and finally followed by the opponent model.Our results validate the analytical approach of the BOA framework to first optimize the individual components, and then to recombine them into a negotiating agent

    Practical strategies for agent-based negotiation in complex environments

    Get PDF
    Agent-based negotiation, whereby the negotiation is automated by software programs, can be applied to many different negotiation situations, including negotiations between friends, businesses or countries. A key benefit of agent-based negotiation over human negotiation is that it can be used to negotiate effectively in complex negotiation environments, which consist of multiple negotiation issues, time constraints, and multiple unknown opponents. While automated negotiation has been an active area of research in the past twenty years, existing work has a number of limitations. Specifically, most of the existing literature has considered time constraints in terms of the number of rounds of negotiation that take place. In contrast, in this work we consider time constraints which are based on the amount of time that has elapsed. This requires a different approach, since the time spent computing the next action has an effect on the utility of the outcome, whereas the actual number of offers exchanged does not. In addition to these time constraints, in the complex negotiation environments which we consider, there are multiple negotiation issues, and we assume that the opponents’ preferences over these issues and the behaviour of those opponents are unknown. Finally, in our environment there can be concurrent negotiations between many participants. Against this background, in this thesis we present the design of a range of practical negotiation strategies, the most advanced of which uses Gaussian process regression to coordinate its concession against its various opponents, whilst considering the behaviour of those opponents and the time constraints. In more detail, the strategy uses observations of the offers made by each opponent to predict the future concession of that opponent. By considering the discounting factor, it predicts the future time which maximises the utility of the offers, and we then use this in setting our rate of concession. Furthermore, we evaluate the negotiation agents that we have developed, which use our strategies, and show that, particularly in the more challenging scenarios, our most advanced strategy outperforms other state-of-the-art agents from the Automated Negotiating Agent Competition, which provides an international benchmark for this work. In more detail, our results show that, in one-to-one negotiation, in the highly discounted scenarios, our agent reaches outcomes which, on average, are 2.3% higher than those of the next best agent. Furthermore, using empirical game theoretic analysis we show the robustness of our strategy in a variety of tournament settings. This analysis shows that, in the highly discounted scenarios, no agent can benefit by choosing a different strategy (taken from the top four strategies in that setting) than ours. Finally, in the many-to-many negotiations, we show how our strategy is particularly effective in highly competitive scenarios, where it outperforms the state-of-the-art many-to-many negotiation strategy by up to 45%.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Engineering coordination : eine Methodologie fĂźr die Koordination von Planungssystemen

    Get PDF
    Planning problems, like real-world planning and scheduling problems, are complex tasks. As an efficient strategy for handing such problems is the ‘divide and conquer’ strategy has been identified. Each sub problem is then solved independently. Typically the sub problems are solved in a linear way. This approach enables the generation of sub-optimal plans for a number of real world problems. Today, this approach is widely accepted and has been established e.g. in the organizational structure of companies. But existing interdependencies between the sub problems are not sufficiently regarded, as each problem are solved sequentially and no feedback information is given. The field of coordination has been covered by a number of academic fields, like the distributed artificial intelligence, economics or game theory. An important result is, that there exist no method that leads to optimal results in any given coordination problem. Consequently, a suitable coordination mechanism has to be identified for each single coordination problem. Up to now, there exists no process for the selection of a coordination mechanism, neither in the engineering of distributed systems nor in agent oriented software engineering. Within the scope of this work the ECo process is presented, that address exactly this selection problem. The Eco process contains the following five steps. • Modeling of the coordination problem • Defining the coordination requirements • Selection / Design of the coordination mechanism • Implementation • Evaluation Each of these steps is detailed in the thesis. The modeling has to be done to enable a systemic analysis of the coordination problem. Coordination mechanisms have to respect the given situation and the context in which the coordination has to be done. The requirements imposed by the context of the coordination problem are formalized in the coordination requirements. The selection process is driven by these coordination requirements. Using the requirements as a distinction for the selection of a coordination mechanism is a central aspect of this thesis. Additionally these requirements can be used for documentation of design decisions. Therefore, it is reasonable to annotate the coordination mechanisms with the coordination requirements they fulfill and fail to ease the selection process, for a given situation. For that reason we present a new classification scheme for coordination methods within this thesis that classifies existing coordination methods according to a set of criteria that has been identified as important for the distinction between different coordination methods. The implementation phase of the ECo process is supported by the CoPS process and CoPS framework that has been developed within this thesis, as well. The CoPS process structures the design making that has to be done during the implementation phase. The CoPS framework provides a set of basic features software agents need for realizing the selected coordination method. Within the CoPS process techniques are presented for the design and implementation of conversations between agents that can be applied not only within the context of the coordination of planning systems, but for multiagent systems in general. The ECo-CoPS approach has been successfully validated in two case studies from the logistic domain.Reale Planungsprobleme, wie etwa die Produktionsplanung in einer Supply Chain, sind komplex Planungsprobleme. Eine übliche Strategie derart komplexen Problemen zu lösen, ist es diese Probleme in einfachere Teilprobleme zu zerlegen und diese dann separat, meist sequentiell, zu lösen (divide-and-conquer Strategie). Dieser Ansatz erlaubt die Erstellung von (suboptimalen) Plänen für eine Reihe von realen Anwendungen, und ist heute in den Organisationsstrukturen von größeren Unternehmen institutionalisiert worden. Allerdings werden Abhängigkeiten zwischen den Teilproblemen nicht ausreichend berücksichtigt, da die Partialprobleme sequentiell ohne Feedback gelöst werden. Die erstellten Teillösungen müssen deswegen oft nachträglich koordiniert werden. Das Gebiet der Koordination wird in verschiedenen Forschungsgebieten, wie etwa der verteilten Künstlichen Intelligenz, den Wirtschaftswissenschaften oder der Spieltheorie untersucht. Ein zentrales Ergebnis dieser Forschung ist, dass es keinen für alle Situationen geeigneten Koordinationsmechanismus gibt. Es stellt sich also die Aufgabe aus den zahlreichen vorgeschlagenen Koordinationsmechanismen eine Auswahl zu treffen, die für die aktuelle Situation den geeigneten Mechanismus identifiziert. Für die Auswahl eines solchen Mechanismus existiert bisher jedoch kein strukturiertes Verfahren für die Entwicklung von verteilten Systems und insbesondere im Bereich der Agenten orientierter Softwareentwicklung. Im Rahmen dieser Arbeit wird genau hierfür ein Verfahren vorgestellt, der ECo-Prozess. Mit Hilfe dieses Prozesses wird der Auswahlprozess in die folgenden Schritte eingeteilt: • Modellierung der Problemstellung und des relevante Kontextes • Formulierung von Anforderungen an einen Koordinationsmechanismus (coordination requirements) • Auswahl/Entwurf eines Koordinationsmechanismuses • Implementierung des Koordinationsverfahrens • Evaluation des Koordinationsverfahrens Diese Schritte werden im Rahmen der vorliegenden Arbeit detailliert beschrieben. Die Modellierung der Problemstellung stellt dabei den ersten Schritt dar, um die Problemstellung analytisch zugänglich zu machen. Koordinationsverfahren müssen die Gegebenheiten, den Kontext und die Domäne, in der sie angewendet werden sollen hinreichend berücksichtigen um anwendbar zu sein. Dieses kann über Anforderungen an den Koordinationsprozess formalisiert werden. Der von den Anforderungen getrieben Auswahlprozess ist ein Kernstück der hier vorgestellten Arbeit. Durch die Formulierung der Anforderungen und der Annotation eines Koordinationsmechanismus bezüglich der erfüllten und nicht erfüllten Anforderungen werden die Motive für Designentscheidungen dieses Verfahren expliziert. Wenn Koordinationsverfahren anhand dieser Anforderungen klassifiziert werden können, ist es weiterhin möglich den Auswahlprozess (unabhängig vom ECo-Ansatz) zu vereinfachen und zu beschleunigen. Im Rahmen dieser Arbeit wird eine Klassifikation von Koordinationsansätzen anhand von allgemeinen Kriterien vorgestellt, die die Identifikation von geeigneten Kandidaten erleichtern. Diese Kandidaten können dann detaillierter untersucht werden. Dies wurde in den vorgestellten Fallstudien erfolgreich demonstriert. Für die Unterstützung der Implementierung eines Koordinationsansatzes wird in dieser Arbeit zusätzlich der CoPS Prozess vorgeschlagen. Der CoPS Prozess erlaubt einen ganzheitlichen systematischen Ansatz für den Entwurf und die Implementierung eines Koordinationsverfahrens. Unterstürzt wird der CoPS Prozess durch das CoPS Framework, das die Implementierung erleichtert, indem es als eine Plattform mit Basisfunktionalität eines Agenten bereitstellt, der für die Koordination von Planungssystemen verantwortlich ist. Im Rahmen des CoPS Verfahrens werden Techniken für den Entwurf und die Implementierung von Konversation im Kontext des agenten-orientiertem Software Engineerings ausführlich behandelt. Der Entwurf von Konversationen geht dabei weit über Fragestellung der Formatierung von Nachrichten hinaus, wie dies etwa in den FIPA Standards geregelt ist, und ist für die Implementierung von agentenbasierten Systemen im Allgemeinen von Bedeutung. Die Funktionsweise des ECo-CoPS Ansatzes wird anhand von zweierfolgreich durchgeführten Fallstudien aus dem betriebswirtschaftlichen Kontext vorgestellt

    Practical strategies for agent-based negotiation in complex environments

    Get PDF
    Agent-based negotiation, whereby the negotiation is automated by software programs, can be applied to many different negotiation situations, including negotiations between friends, businesses or countries. A key benefit of agent-based negotiation over human negotiation is that it can be used to negotiate effectively in complex negotiation environments, which consist of multiple negotiation issues, time constraints, and multiple unknown opponents. While automated negotiation has been an active area of research in the past twenty years, existing work has a number of limitations. Specifically, most of the existing literature has considered time constraints in terms of the number of rounds of negotiation that take place. In contrast, in this work we consider time constraints which are based on the amount of time that has elapsed. This requires a different approach, since the time spent computing the next action has an effect on the utility of the outcome, whereas the actual number of offers exchanged does not. In addition to these time constraints, in the complex negotiation environments which we consider, there are multiple negotiation issues, and we assume that the opponents’ preferences over these issues and the behaviour of those opponents are unknown. Finally, in our environment there can be concurrent negotiations between many participants. Against this background, in this thesis we present the design of a range of practical negotiation strategies, the most advanced of which uses Gaussian process regression to coordinate its concession against its various opponents, whilst considering the behaviour of those opponents and the time constraints. In more detail, the strategy uses observations of the offers made by each opponent to predict the future concession of that opponent. By considering the discounting factor, it predicts the future time which maximises the utility of the offers, and we then use this in setting our rate of concession. Furthermore, we evaluate the negotiation agents that we have developed, which use our strategies, and show that, particularly in the more challenging scenarios, our most advanced strategy outperforms other state-of-the-art agents from the Automated Negotiating Agent Competition, which provides an international benchmark for this work. In more detail, our results show that, in one-to-one negotiation, in the highly discounted scenarios, our agent reaches outcomes which, on average, are 2.3% higher than those of the next best agent. Furthermore, using empirical game theoretic analysis we show the robustness of our strategy in a variety of tournament settings. This analysis shows that, in the highly discounted scenarios, no agent can benefit by choosing a different strategy (taken from the top four strategies in that setting) than ours. Finally, in the many-to-many negotiations, we show how our strategy is particularly effective in highly competitive scenarios, where it outperforms the state-of-the-art many-to-many negotiation strategy by up to 45%.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    • …
    corecore