995 research outputs found

    A Survey on Automated Software Vulnerability Detection Using Machine Learning and Deep Learning

    Full text link
    Software vulnerability detection is critical in software security because it identifies potential bugs in software systems, enabling immediate remediation and mitigation measures to be implemented before they may be exploited. Automatic vulnerability identification is important because it can evaluate large codebases more efficiently than manual code auditing. Many Machine Learning (ML) and Deep Learning (DL) based models for detecting vulnerabilities in source code have been presented in recent years. However, a survey that summarises, classifies, and analyses the application of ML/DL models for vulnerability detection is missing. It may be difficult to discover gaps in existing research and potential for future improvement without a comprehensive survey. This could result in essential areas of research being overlooked or under-represented, leading to a skewed understanding of the state of the art in vulnerability detection. This work address that gap by presenting a systematic survey to characterize various features of ML/DL-based source code level software vulnerability detection approaches via five primary research questions (RQs). Specifically, our RQ1 examines the trend of publications that leverage ML/DL for vulnerability detection, including the evolution of research and the distribution of publication venues. RQ2 describes vulnerability datasets used by existing ML/DL-based models, including their sources, types, and representations, as well as analyses of the embedding techniques used by these approaches. RQ3 explores the model architectures and design assumptions of ML/DL-based vulnerability detection approaches. RQ4 summarises the type and frequency of vulnerabilities that are covered by existing studies. Lastly, RQ5 presents a list of current challenges to be researched and an outline of a potential research roadmap that highlights crucial opportunities for future work

    Model-Driven Engineering for Artificial Intelligence - A Systematic Literature Review

    Get PDF
    Objective: This study aims to investigate the existing body of knowledge in the field of Model-Driven Engineering MDE in support of AI (MDE4AI) to sharpen future research further and define the current state of the art. Method: We conducted a Systemic Literature Review (SLR), collecting papers from five major databases resulting in 703 candidate studies, eventually retaining 15 primary studies. Each primary study will be evaluated and discussed with respect to the adoption of (1) MDE principles and practices and (2) the phases of AI development support aligned with the stages of the CRISP-DM methodology. Results: The study's findings show that the pillar concepts of MDE (metamodel, concrete syntax and model transformation), are leveraged to define domain-specific languages (DSL) explicitly addressing AI concerns. Different MDE technologies are used, leveraging different language workbenches. The most prominent AI-related concerns are training and modeling of the AI algorithm, while minor emphasis is given to the time-consuming preparation of the data sets. Early project phases that support interdisciplinary communication of requirements, such as the CRISP-DM \textit{Business Understanding} phase, are rarely reflected. Conclusion: The study found that the use of MDE for AI is still in its early stages, and there is no single tool or method that is widely used. Additionally, current approaches tend to focus on specific stages of development rather than providing support for the entire development process. As a result, the study suggests several research directions to further improve the use of MDE for AI and to guide future research in this area

    Use and misuse of the term "Experiment" in mining software repositories research

    Get PDF
    The significant momentum and importance of Mining Software Repositories (MSR) in Software Engineering (SE) has fostered new opportunities and challenges for extensive empirical research. However, MSR researchers seem to struggle to characterize the empirical methods they use into the existing empirical SE body of knowledge. This is especially the case of MSR experiments. To provide evidence on the special characteristics of MSR experiments and their differences with experiments traditionally acknowledged in SE so far, we elicited the hallmarks that differentiate an experiment from other types of empirical studies and characterized the hallmarks and types of experiments in MSR. We analyzed MSR literature obtained from a small-scale systematic mapping study to assess the use of the term experiment in MSR. We found that 19% of the papers claiming to be an experiment are indeed not an experiment at all but also observational studies, so they use the term in a misleading way. From the remaining 81% of the papers, only one of them refers to a genuine controlled experiment while the others stand for experiments with limited control. MSR researchers tend to overlook such limitations, compromising the interpretation of the results of their studies. We provide recommendations and insights to support the improvement of MSR experiments.This work has been partially supported by the Spanish project: MCI PID2020-117191RB-I00.Peer ReviewedPostprint (author's final draft

    Understanding the Issues, Their Causes and Solutions in Microservices Systems: An Empirical Study

    Full text link
    Many small to large organizations have adopted the Microservices Architecture (MSA) style to develop and deliver their core businesses. Despite the popularity of MSA in the software industry, there is a limited evidence-based and thorough understanding of the types of issues (e.g., errors, faults, failures, and bugs) that microservices system developers experience, the causes of the issues, and the solutions as potential fixing strategies to address the issues. To ameliorate this gap, we conducted a mixed-methods empirical study that collected data from 2,641 issues from the issue tracking systems of 15 open-source microservices systems on GitHub, 15 interviews, and an online survey completed by 150 practitioners from 42 countries across 6 continents. Our analysis led to comprehensive taxonomies for the issues, causes, and solutions. The findings of this study inform that Technical Debt, Continuous Integration and Delivery, Exception Handling, Service Execution and Communication, and Security are the most dominant issues in microservices systems. Furthermore, General Programming Errors, Missing Features and Artifacts, and Invalid Configuration and Communication are the main causes behind the issues. Finally, we found 177 types of solutions that can be applied to fix the identified issues. Based on our study results, we formulated future research directions that could help researchers and practitioners to engineer emergent and next-generation microservices systems.Comment: 35 pages, 5 images, 7 tables, Manuscript submitted to a Journal (2023

    Social media mining under the COVID-19 context: Progress, challenges, and opportunities

    Full text link
    Social media platforms allow users worldwide to create and share information, forging vast sensing networks that allow information on certain topics to be collected, stored, mined, and analyzed in a rapid manner. During the COVID-19 pandemic, extensive social media mining efforts have been undertaken to tackle COVID-19 challenges from various perspectives. This review summarizes the progress of social media data mining studies in the COVID-19 contexts and categorizes them into six major domains, including early warning and detection, human mobility monitoring, communication and information conveying, public attitudes and emotions, infodemic and misinformation, and hatred and violence. We further document essential features of publicly available COVID-19 related social media data archives that will benefit research communities in conducting replicable and repro�ducible studies. In addition, we discuss seven challenges in social media analytics associated with their potential impacts on derived COVID-19 findings, followed by our visions for the possible paths forward in regard to social media-based COVID-19 investigations. This review serves as a valuable reference that recaps social media mining efforts in COVID-19 related studies and provides future directions along which the information harnessed from social media can be used to address public health emergencies

    Quantinar: a blockchain p2p ecosystem for honest scientific research

    Full text link
    Living in the Information Age, the power of data and correct statistical analysis has never been more prevalent. Academics, practitioners and many other professionals nowadays require an accurate application of quantitative methods. Though many branches are subject to a crisis of integrity, which is shown in improper use of statistical models, pp-hacking, HARKing or failure to replicate results. We propose the use of a peer-to-peer education network, Quantinar, to spread quantitative analysis knowledge embedded with code in the form of Quantlets. The integration of blockchain technology makes Quantinar a decentralised autonomous organisation (DAO) that ensures fully transparent and reproducible scientific research
    • …
    corecore