150 research outputs found

    Enhancing trustability in MMOGs environments

    Get PDF
    Massively Multiplayer Online Games (MMOGs; e.g., World of Warcraft), virtual worlds (VW; e.g., Second Life), social networks (e.g., Facebook) strongly demand for more autonomic, security, and trust mechanisms in a way similar to humans do in the real life world. As known, this is a difficult matter because trusting in humans and organizations depends on the perception and experience of each individual, which is difficult to quantify or measure. In fact, these societal environments lack trust mechanisms similar to those involved in humans-to-human interactions. Besides, interactions mediated by compute devices are constantly evolving, requiring trust mechanisms that keep the pace with the developments and assess risk situations. In VW/MMOGs, it is widely recognized that users develop trust relationships from their in-world interactions with others. However, these trust relationships end up not being represented in the data structures (or databases) of such virtual worlds, though they sometimes appear associated to reputation and recommendation systems. In addition, as far as we know, the user is not provided with a personal trust tool to sustain his/her decision making while he/she interacts with other users in the virtual or game world. In order to solve this problem, as well as those mentioned above, we propose herein a formal representation of these personal trust relationships, which are based on avataravatar interactions. The leading idea is to provide each avatar-impersonated player with a personal trust tool that follows a distributed trust model, i.e., the trust data is distributed over the societal network of a given VW/MMOG. Representing, manipulating, and inferring trust from the user/player point of view certainly is a grand challenge. When someone meets an unknown individual, the question is “Can I trust him/her or not?”. It is clear that this requires the user to have access to a representation of trust about others, but, unless we are using an open source VW/MMOG, it is difficult —not to say unfeasible— to get access to such data. Even, in an open source system, a number of users may refuse to pass information about its friends, acquaintances, or others. Putting together its own data and gathered data obtained from others, the avatar-impersonated player should be able to come across a trust result about its current trustee. For the trust assessment method used in this thesis, we use subjective logic operators and graph search algorithms to undertake such trust inference about the trustee. The proposed trust inference system has been validated using a number of OpenSimulator (opensimulator.org) scenarios, which showed an accuracy increase in evaluating trustability of avatars. Summing up, our proposal aims thus to introduce a trust theory for virtual worlds, its trust assessment metrics (e.g., subjective logic) and trust discovery methods (e.g., graph search methods), on an individual basis, rather than based on usual centralized reputation systems. In particular, and unlike other trust discovery methods, our methods run at interactive rates.MMOGs (Massively Multiplayer Online Games, como por exemplo, World of Warcraft), mundos virtuais (VW, como por exemplo, o Second Life) e redes sociais (como por exemplo, Facebook) necessitam de mecanismos de confiança mais autónomos, capazes de assegurar a segurança e a confiança de uma forma semelhante à que os seres humanos utilizam na vida real. Como se sabe, esta não é uma questão fácil. Porque confiar em seres humanos e ou organizações depende da percepção e da experiência de cada indivíduo, o que é difícil de quantificar ou medir à partida. Na verdade, esses ambientes sociais carecem dos mecanismos de confiança presentes em interacções humanas presenciais. Além disso, as interacções mediadas por dispositivos computacionais estão em constante evolução, necessitando de mecanismos de confiança adequados ao ritmo da evolução para avaliar situações de risco. Em VW/MMOGs, é amplamente reconhecido que os utilizadores desenvolvem relações de confiança a partir das suas interacções no mundo com outros. No entanto, essas relações de confiança acabam por não ser representadas nas estruturas de dados (ou bases de dados) do VW/MMOG específico, embora às vezes apareçam associados à reputação e a sistemas de reputação. Além disso, tanto quanto sabemos, ao utilizador não lhe é facultado nenhum mecanismo que suporte uma ferramenta de confiança individual para sustentar o seu processo de tomada de decisão, enquanto ele interage com outros utilizadores no mundo virtual ou jogo. A fim de resolver este problema, bem como os mencionados acima, propomos nesta tese uma representação formal para essas relações de confiança pessoal, baseada em interacções avatar-avatar. A ideia principal é fornecer a cada jogador representado por um avatar uma ferramenta de confiança pessoal que segue um modelo de confiança distribuída, ou seja, os dados de confiança são distribuídos através da rede social de um determinado VW/MMOG. Representar, manipular e inferir a confiança do ponto de utilizador/jogador, é certamente um grande desafio. Quando alguém encontra um indivíduo desconhecido, a pergunta é “Posso confiar ou não nele?”. É claro que isto requer que o utilizador tenha acesso a uma representação de confiança sobre os outros, mas, a menos que possamos usar uma plataforma VW/MMOG de código aberto, é difícil — para não dizer impossível — obter acesso aos dados gerados pelos utilizadores. Mesmo em sistemas de código aberto, um número de utilizadores pode recusar partilhar informações sobre seus amigos, conhecidos, ou sobre outros. Ao juntar seus próprios dados com os dados obtidos de outros, o utilizador/jogador representado por um avatar deve ser capaz de produzir uma avaliação de confiança sobre o utilizador/jogador com o qual se encontra a interagir. Relativamente ao método de avaliação de confiança empregue nesta tese, utilizamos lógica subjectiva para a representação da confiança, e também operadores lógicos da lógica subjectiva juntamente com algoritmos de procura em grafos para empreender o processo de inferência da confiança relativamente a outro utilizador. O sistema de inferência de confiança proposto foi validado através de um número de cenários Open-Simulator (opensimulator.org), que mostrou um aumento na precisão na avaliação da confiança de avatares. Resumindo, a nossa proposta visa, assim, introduzir uma teoria de confiança para mundos virtuais, conjuntamente com métricas de avaliação de confiança (por exemplo, a lógica subjectiva) e em métodos de procura de caminhos de confiança (com por exemplo, através de métodos de pesquisa em grafos), partindo de uma base individual, em vez de se basear em sistemas habituais de reputação centralizados. Em particular, e ao contrário de outros métodos de determinação do grau de confiança, os nossos métodos são executados em tempo real

    Enabling rapid and cost-effective creation of massive pervasive games in very unstable environments

    Get PDF
    Pervasive gaming is a new form of multimedia entertainment that extends the traditional computer gaming experience out into the real world. Through a combination of personal devices, positioning systems and other sensors, combined with wireless networking, a pervasive game can respond to player's movements and context and enable them to communicate with a game engine and other players. We review our recent deployment examples of pervasive games in order to explain their distinctive characteristics as wireless ad-hoc networking applications. We then identify the network support challenges of scaling pervasive games to include potentially mass numbers of players across extremely heterogeneous and unreliable networks. We propose a P2P overlay capable of storing large amount of game related data, which is the key to combating the loss of coverage and potential dishonesty of players. The proposed protocol decreases the deployment costs of the gaming infrastructure by self organization and utilizing storage space of users' devices. We demonstrate scalability and increased availability of data offered by the proposed protocol in simulation based evaluatio

    Re-engineering jake2 to work on a grid using the GridGain Middleware

    Get PDF
    With the advent of Massively Multiplayer Online Games (MMOGs), engineers and designers of games came across with many questions that needed to be answered such as, for example, "how to allow a large amount of clients to play simultaneously on the same server?", "how to guarantee a good quality of service (QoS) to a great number of clients?", "how many resources will be necessary?", "how to optimize these resources to the maximum?". A possible answer to these questions relies on the usage of grid computing. Taking into account the parallel and distributed nature of grid computing, we can say that grid computing allows for more scalability in terms of a growing number of players, guarantees shorter communication time between clients and servers, and allows for a better resource management and usage (e.g., memory, CPU, core balancing usage, etc.) than the traditional serial computing model. However, the main focus of this thesis is not about grid computing. Instead, this thesis describes the re-engineering process of an existing multiplayer computer game, called Jake2, by transforming it into a MMOG, which is then put to run on a grid

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    A peer-to-peer simulation technique for instanced massively multiplayer games

    Full text link

    Design Issues for Peer-to-Peer Massively Multiplayer Online Games.

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale, and while classical Client/Server (C/S) architectures convey some benefits, they suffer from significant technical and commercial drawbacks. This realisation has sparked intensive research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This paper articulates a comprehensive set of six design issues to be addressed by P2P MMOGs, namely Interest Management (IM), game event dissemination, Non-Player Character (NPC) host allocation, game state persistency, cheating mitigation and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. We further evaluate how well representative P2P MMOG architectures fulfil the design criteria

    On the limits of engine analysis for cheating detection in chess

    Get PDF
    The integrity of online games has important economic consequences for both the gaming industry and players of all levels, from professionals to amateurs. Where there is a high likelihood of cheating, there is a loss of trust and players will be reluctant to participate — particularly if this is likely to cost them money. Chess is a game that has been established online for around 25 years and is played over the Internet commercially. In that environment, where players are not physically present “over the board” (OTB), chess is one of the most easily exploitable games by those who wish to cheat, because of the widespread availability of very strong chess-playing programs. Allegations of cheating even in OTB games have increased significantly in recent years, and even led to recent changes in the laws of the game that potentially impinge upon players’ privacy. In this work, we examine some of the difficulties inherent in identifying the covert use of chess-playing programs purely from an analysis of the moves of a game. Our approach is to deeply examine a large collection of games where there is confidence that cheating has not taken place, and analyse those that could be easily misclassified. We conclude that there is a serious risk of finding numerous “false positives” and that, in general, it is unsafe to use just the moves of a single game as prima facie evidence of cheating. We also demonstrate that it is impossible to compute definitive values of the figures currently employed to measure similarity to a chess-engine for a particular game, as values inevitably vary at different depths and, even under identical conditions, when multi-threading evaluation is used

    Cheating in networked computer games: a review

    Get PDF
    The increasing popularity of Massively Multiplayer Online Games (MMOG) - games involving thousands of players participating simultaneously in a single virtual world - has highlighted the scalability bottlenecks present in centralised Client/Server (C/S) architectures. Researchers are proposing Peer-to-Peer (P2P) architectures as a scalable alternative to C/S; however, P2P is more vulnerable to cheating as it decentralises the game state and logic to un-trusted peer machines, rather than using trusted centralised servers. Cheating is a major concern for online games, as a minority of cheaters can potentially ruin the game for all players. In this paper we present a review and classification of known cheats, and provide real-world examples where possible. Further, we discuss counter measures used by C/S architectures to prevent cheating. Finally, we discuss several P2P architectures designed to prevent cheating, highlighting their strengths and weaknesses

    Distributed game

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe demand for online games has risen over the years, expanding multiplayer support for new and different game genres. Among them are Massively Multiplayer Online games, one of the most popular and successful game types in the industry. Nowadays, this industry is thriving, evolving alongside technological advancements and producing billions in revenue, making it an economic importance. However, as the complexity of these games grows, so do the challenges they face when constructing them. This dissertation aims to implement a distributed game, through a proof of concept or an existing game, using a distributed architecture to acquire knowledge in the construction of such complex systems and the effort involved in dealing with consistency, maintaining communication infrastructure, and managing data in a distributed way. It is also intended that this project implements multiple mechanisms capable of autonomously helping manage and maintain the correct state of the system. To evaluate the proposed solution, a detailed analysis is carried out with performance benchmark analysis, stress testing, followed by an examination of its security, scalability, and distribution’s resilience. Overall, the present research work allowed for a greater understanding of the technologies and approaches used in constructing a gaming system, establishing a new set of development opportunities to be further investi gated upon the constructed solution.A procura por jogos online aumentou ao longo dos anos, expandindo o suporte multiplayer para novos e diferentes géneros. Entre estes estão os jogos Massively Multiplayer Online, um dos tipos de jogos mais populares e bem-sucedidos na indústria. Atualmente, esta indústria está a prosperar, evoluindo com os avanços tecnológicos e gerando milhares de milhões em receita, tornando-se uma importância económica. Porém, à medida que a complexidade destes jogos aumenta, também aumenta os problemas encontrados durante a sua construção. Esta dissertação tem como objetivo implementar um jogo distribuído, através de uma prova de conceito ou um jogo existente, usando uma arquitetura distribuída a fim de adquirir conhecimento na construção destes sistemas complexos e o esforço envolvido em lidar com consistência, manter a infraestrutura de comunicação e gerir dados de maneira distribuída. Para isto, é pretendido que este projeto também implemente vários mecanismos capazes de, forma autônoma, ajudar a gerir e manter o correto estado do sistema. Para avaliar o solução proposta, uma análise detalhada é realizada sobre o desempenho, segurança, escalabilidade e resiliência da distribuição do sistema. De forma geral, o presente trabalho de pesquisa permitiu uma maior compreensão das tecnologias e abordagens utilizadas na construção de um sistema de jogos, estabelecendo um novo conjunto de oportunidades de desenvolvimento a serem investigadas sobre a solução construída
    corecore