58 research outputs found

    Quantum Benchmarking: entanglement measures in quantum computers

    Full text link
    Màster Oficial de Ciència i Tecnologia Quàntiques / Quantum Science and Technology, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutora : Alba Cervera-LiertaQuantum computation has emerged as a promising paradigm shift in the field of computing, and with the advent of new quantum computers, it has become crucial to assess and quantify their performance. Benchmarking, a wellestablished practice in the field, plays a vital role in this regard. One effective way to evaluate a quantum computer’s capabilities is by measuring the amount of entanglement it exhibits, as entanglement is a fundamental characteristic of quantum systems. In this thesis, we provide a comprehensive overview of the current landscape of quantum benchmarking and propose several protocols for estimating the Rényi entropy of quantum states, which offers valuable insights into the entanglement structure of these states. We present a protocol based on the renowned Swap test, specifically designed for future fault-tolerant devices, as well as another protocol based on randomized measurements to address the limitations of current NISQ devices. We have implemented these protocols on the quantum simulation framework of Qibo, ensuring an efficient and reliable execution on any quantum computer, in particular the one at the Barcelona Supercomputing Center (BSC). Through this work, we aim to contribute to the advancement of quantum benchmarking and facilitate the assessment of entanglement in quantum computing systems

    Quantum Computing for Climate Change Detection, Climate Modeling, and Climate Digital Twin

    Get PDF
    This study explores the potential of quantum machine learning and quantum computing for climate change detection, climate modeling, and climate digital twin. We additionally consider the time and energy consumption of quantum machines and classical computers. Moreover, we identified several use-case instances for climate change detection, climate modeling, and climate digital twin that are challenging for conventional computers but can be tackled efficiently with quantum machines or by integrating them with classical computers. We also evaluated the efficacy of quantum annealers, quantum simulators, and universal quantum computers, each designed to solve specific types and kinds of computational problems that are otherwise difficult

    A Framework for Demonstrating Practical Quantum Advantage: Racing Quantum against Classical Generative Models

    Full text link
    Generative modeling has seen a rising interest in both classical and quantum machine learning, and it represents a promising candidate to obtain a practical quantum advantage in the near term. In this study, we build over a proposed framework for evaluating the generalization performance of generative models, and we establish the first quantitative comparative race towards practical quantum advantage (PQA) between classical and quantum generative models, namely Quantum Circuit Born Machines (QCBMs), Transformers (TFs), Recurrent Neural Networks (RNNs), Variational Autoencoders (VAEs), and Wasserstein Generative Adversarial Networks (WGANs). After defining four types of PQAs scenarios, we focus on what we refer to as potential PQA, aiming to compare quantum models with the best-known classical algorithms for the task at hand. We let the models race on a well-defined and application-relevant competition setting, where we illustrate and demonstrate our framework on 20 variables (qubits) generative modeling task. Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models. Such a feature is highly desirable in a wide range of real-world applications where the available data is scarce.Comment: 17 pages, 5 figures, 3 table

    Practical Guide for Building Superconducting Quantum Devices

    Get PDF
    Quantum computing offers a powerful new paradigm of information processing that has the potential to transform a wide range of industries. In the pursuit of the tantalizing promises of a universal quantum computer, a multitude of new knowledge and expertise has been developed, enabling the construction of novel quantum algorithms as well as increasingly robust quantum hardware. In particular, we have witnessed rapid progress in the circuit quantum electrodynamics (cQED) technology, which has emerged as one of the most promising physical systems that is capable of addressing the key challenges in realizing full-stack quantum computing on a large scale. In this Tutorial, we present some of the most crucial building blocks developed by the cQED community in recent years and a précis of the latest achievements towards robust universal quantum computation. More importantly, we aim to provide a synoptic outline of the core techniques that underlie most cQED experiments and offer a practical guide for a novice experimentalist to design, construct, and characterize their first quantum device

    Realization of Multi-Valued Logic Using Optical Quantum Computing

    Get PDF
    Quantum computing is a paradigm of computing using physical systems, which operate according to quantum mechanical principles. Since 2017, functioning quantum processing units with limited capabilities are available on the cloud. There are two models of quantum computing in the literature: discrete variable and continuous variable models. The discrete variable model is an extension of the binary logic of digital computing with quantum bits |0⟩ and |1⟩ . In the continuous variable model, the quantum state space is infinite-dimensional and the quantum state is expressed with an infinite number of basis elements. In the physical implementation of quantum computing, however, the quantized energy levels of the electromagnetic field come in multiple values, naturally realizing the multi-valued logic of computing. Hence, to implement the discrete variable model (binary logic) of quantum computing, the temperature control is needed to restrict the energy levels to the lowest two to express the binary quantum states |0⟩ and |1⟩. The physical realization of the continuous variable model naturally implements the multi-valued logic of computing because any physical system always has the highest level of quantized energy observed i.e., the quantum state space is always finite dimensional. In 2001, Knill, Laflamme, and Milburn proved that linear optics realizes universal quantum computing in the qubit-based model. Optical quantum computers by Xanadu, under the phase space representation of quantum optics, naturally realizes the multi-valued logic of quantum computing at room temperature. Optical quantum computers use optical signals, which are most compatible with the fiber optics communication network. They are easily fabricable for mass production, robust to noise, and have low latency. Optical quantum computing provides flexibility to the users for determining the dimension of the computational space for each instance of computation. Additionally, nonlinear quantum optical effects are incorporated as nonlinear quantum gates. That flexibility of user-defined dimension of the computational space and availability of nonlinear gates lead to a faithful implementation of quantum neural networks in optical quantum computing. This dissertation provides a full description of a multi-class data quantum classifier on ten classes of the MNIST dataset. In this dissertation, I provide the background information of optical quantum computing as an ideal candidate material for building the future classical-quantum hybrid internet for its numerous benefits, among which the compatibility with the existing communications/computing infrastructure is a main one. I also show that optical quantum computing can be a hardware platform for realizing the multi- valued logic of computing without the need to encode and decode computational problems in binary logic. I also derive explicit matrix representation of optical quantum gates in the phase space representation. Using the multi-valued logic of optical quantum computing, I introduce the first quantum multi-class data classifier, classifying all ten classes of the MNIST dataset

    Modelling of a System for the Detection of Weak Signals Through Text Mining and NLP. Proposal of Improvement by a Quantum Variational Circuit

    Full text link
    Tesis por compendio[ES] En esta tesis doctoral se propone y evalúa un sistema para detectar señales débiles (weak signals) relacionadas con cambios futuros trascendentales. Si bien la mayoría de las soluciones conocidas se basan en el uso de datos estructurados, el sistema propuesto detecta cuantitativamente estas señales utilizando información heterogénea y no estructurada de fuentes científicas, periodísticas y de redes sociales. La predicción de nuevas tendencias en un medio tiene muchas aplicaciones. Por ejemplo, empresas y startups se enfrentan a cambios constantes en sus mercados que son muy difíciles de predecir. Por esta razón, el desarrollo de sistemas para detectar automáticamente cambios futuros significativos en una etapa temprana es relevante para que cualquier organización tome decisiones acertadas a tiempo. Este trabajo ha sido diseñado para obtener señales débiles del futuro en cualquier campo dependiendo únicamente del conjunto de datos de entrada de documentos. Se aplican técnicas de minería de textos y procesamiento del lenguaje natural para procesar todos estos documentos. Como resultado, se obtiene un mapa con un ranking de términos, una lista de palabras clave clasificadas automáticamente y una lista de expresiones formadas por múltiples palabras. El sistema completo se ha probado en cuatro sectores diferentes: paneles solares, inteligencia artificial, sensores remotos e imágenes médicas. Este trabajo ha obtenido resultados prometedores, evaluados con dos metodologías diferentes. Como resultado, el sistema ha sido capaz de detectar de forma satisfactoria nuevas tendencias en etapas muy tempranas que se han vuelto cada vez más importantes en la actualidad. La computación cuántica es un nuevo paradigma para una multitud de aplicaciones informáticas. En esta tesis doctoral también se presenta un estudio de las tecnologías disponibles en la actualidad para la implementación física de qubits y puertas cuánticas, estableciendo sus principales ventajas y desventajas, y los marcos disponibles para la programación e implementación de circuitos cuánticos. Con el fin de mejorar la efectividad del sistema, se describe un diseño de un circuito cuántico basado en máquinas de vectores de soporte (SVM) para la resolución de problemas de clasificación. Este circuito está especialmente diseñado para los ruidosos procesadores cuánticos de escala intermedia (NISQ) que están disponibles actualmente. Como experimento, el circuito ha sido probado en un computador cuántico real basado en qubits superconductores por IBM como una mejora para el subsistema de minería de texto en la detección de señales débiles. Los resultados obtenidos con el experimento cuántico muestran también conclusiones interesantes y una mejora en el rendimiento de cerca del 20% sobre los sistemas convencionales, pero a su vez confirman que aún se requiere un desarrollo tecnológico continuo para aprovechar al máximo la computación cuántica.[CA] En aquesta tesi doctoral es proposa i avalua un sistema per detectar senyals febles (weak signals) relacionats amb canvis futurs transcendentals. Si bé la majoria de solucions conegudes es basen en l'ús de dades estructurades, el sistema proposat detecta quantitativament aquests senyals utilitzant informació heterogènia i no estructurada de fonts científiques, periodístiques i de xarxes socials. La predicció de noves tendències en un medi té moltes aplicacions. Per exemple, empreses i startups s'enfronten a canvis constants als seus mercats que són molt difícils de predir. Per això, el desenvolupament de sistemes per detectar automàticament canvis futurs significatius en una etapa primerenca és rellevant perquè les organitzacions prenguen decisions encertades a temps. Aquest treball ha estat dissenyat per obtenir senyals febles del futur a qualsevol camp depenent únicament del conjunt de dades d'entrada de documents. S'hi apliquen tècniques de mineria de textos i processament del llenguatge natural per processar tots aquests documents. Com a resultat, s'obté un mapa amb un rànquing de termes, un llistat de paraules clau classificades automàticament i un llistat d'expressions formades per múltiples paraules. El sistema complet s'ha provat en quatre sectors diferents: panells solars, intel·ligència artificial, sensors remots i imatges mèdiques. Aquest treball ha obtingut resultats prometedors, avaluats amb dues metodologies diferents. Com a resultat, el sistema ha estat capaç de detectar de manera satisfactòria noves tendències en etapes molt primerenques que s'han tornat cada cop més importants actualment. La computació quàntica és un paradigma nou per a una multitud d'aplicacions informàtiques. En aquesta tesi doctoral també es presenta un estudi de les tecnologies disponibles actualment per a la implementació física de qubits i portes quàntiques, establint-ne els principals avantatges i desavantatges, i els marcs disponibles per a la programació i implementació de circuits quàntics. Per tal de millorar l'efectivitat del sistema, es descriu un disseny d'un circuit quàntic basat en màquines de vectors de suport (SVM) per resoldre problemes de classificació. Aquest circuit està dissenyat especialment per als sorollosos processadors quàntics d'escala intermèdia (NISQ) que estan disponibles actualment. Com a experiment, el circuit ha estat provat en un ordinador quàntic real basat en qubits superconductors per IBM com una millora per al subsistema de mineria de text. Els resultats obtinguts amb l'experiment quàntic també mostren conclusions interessants i una millora en el rendiment de prop del 20% sobre els sistemes convencionals, però a la vegada confirmen que encara es requereix un desenvolupament tecnològic continu per aprofitar al màxim la computació quàntica.[EN] In this doctoral thesis, a system to detect weak signals related to future transcendental changes is proposed and tested. While most known solutions are based on the use of structured data, the proposed system quantitatively detects these signals using heterogeneous and unstructured information from scientific, journalistic, and social sources. Predicting new trends in an environment has many applications. For instance, companies and startups face constant changes in their markets that are very difficult to predict. For this reason, developing systems to automatically detect significant future changes at an early stage is relevant for any organization to make right decisions on time. This work has been designed to obtain weak signals of the future in any field depending only on the input dataset of documents. Text mining and natural language processing techniques are applied to process all these documents. As a result, a map of ranked terms, a list of automatically classified keywords and a list of multi-word expressions are obtained. The overall system has been tested in four different sectors: solar panels, artificial intelligence, remote sensing, and medical imaging. This work has obtained promising results that have been evaluated with two different methodologies. As a result, the system was able to successfully detect new trends at a very early stage that have become more and more important today. Quantum computing is a new paradigm for a multitude of computing applications. This doctoral thesis also presents a study of the technologies that are currently available for the physical implementation of qubits and quantum gates, establishing their main advantages and disadvantages and the available frameworks for programming and implementing quantum circuits. In order to improve the effectiveness of the system, a design of a quantum circuit based on support vector machines (SVMs) is described for the resolution of classification problems. This circuit is specially designed for the noisy intermediate-scale quantum (NISQ) computers that are currently available. As an experiment, the circuit has been tested on a real quantum computer based on superconducting qubits by IBM as an improvement for the text mining subsystem in the detection of weak signals. The results obtained with the quantum experiment show interesting outcomes with an improvement of close to 20% better performance than conventional systems, but also confirm that ongoing technological development is still required to take full advantage of quantum computing.Griol Barres, I. (2022). Modelling of a System for the Detection of Weak Signals Through Text Mining and NLP. Proposal of Improvement by a Quantum Variational Circuit [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/183029TESISCompendi
    corecore