17 research outputs found

    Towards a science of security games

    Get PDF
    Abstract. Security is a critical concern around the world. In many domains from counter-terrorism to sustainability, limited security resources prevent complete security coverage at all times. Instead, these limited resources must be scheduled (or allocated or deployed), while simultaneously taking into account the impor-tance of different targets, the responses of the adversaries to the security posture, and the potential uncertainties in adversary payoffs and observations, etc. Com-putational game theory can help generate such security schedules. Indeed, casting the problem as a Stackelberg game, we have developed new algorithms that are now deployed over multiple years in multiple applications for scheduling of secu-rity resources. These applications are leading to real-world use-inspired research in the emerging research area of “security games”. The research challenges posed by these applications include scaling up security games to real-world sized prob-lems, handling multiple types of uncertainty, and dealing with bounded rationality of human adversaries.

    Persuasion, Political Warfare, and Deterrence: Behavioral and Behaviorally Robust Models

    Get PDF
    This dissertation examines game theory models in the context of persuasion and competition wherein decision-makers are not completely rational by considering two complementary threads of research. The first thread of research pertains to offensive and preemptively defensive behavioral models. Research in this thread makes three notable contributions. First, an offensive modeling framework is created to identify how an entity optimally influences a populace to take a desired course of action. Second, a defensive modeling framework is defined wherein a regulating entity takes action to bound the behavior of multiple adversaries simultaneously attempting to persuade a group of decision-makers. Third, an offensive influence modeling framework under conditions of ambiguity is developed in accordance with historical information limitations, and we demonstrate how it can be used to select a robust course of action on a specific, data-driven use case. The second thread of research pertains to behavioral and behaviorally robust approaches to deterrence. Research in this thread makes two notable contributions. First, we demonstrate the alternative insights behavioral game theory generates for the analysis of classic deterrence games, and explicate the rich analysis generated from its combined use with standard equilibrium models. Second, we define behaviorally robust models for an agent to use in a normal form game under varying forms of uncertainty in order to inform deterrence policy decisions

    Adversarial patrolling with spatially uncertain alarm signals

    Get PDF
    When securing complex infrastructures or large environments, constant surveillance of every area is not affordable. To cope with this issue, a common countermeasure is the usage of cheap but wide-ranged sensors, able to detect suspicious events that occur in large areas, supporting patrollers to improve the effectiveness of their strategies. However, such sensors are commonly affected by uncertainty. In the present paper, we focus on spatially uncertain alarm signals. That is, the alarm system is able to detect an attack but it is uncertain on the exact position where the attack is taking place. This is common when the area to be secured is wide, such as in border patrolling and fair site surveillance. We propose, to the best of our knowledge, the first Patrolling Security Game where a Defender is supported by a spatially uncertain alarm system, which non-deterministically generates signals once a target is under attack. We show that finding the optimal strategy is FNP-hard even in tree graphs and APX-hard in arbitrary graphs. We provide two (exponential time) exact algorithms and two (polynomial time) approximation algorithms. Finally, we show that, without false positives and missed detections, the best patrolling strategy reduces to stay in a place, wait for a signal, and respond to it at best. This strategy is optimal even with non-negligible missed detection rates, which, unfortunately, affect every commercial alarm system. We evaluate our methods in simulation, assessing both quantitative and qualitative aspects
    corecore