1,253 research outputs found

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    Using fuzzy logic to integrate neural networks and knowledge-based systems

    Get PDF
    Outlined here is a novel hybrid architecture that uses fuzzy logic to integrate neural networks and knowledge-based systems. The author's approach offers important synergistic benefits to neural nets, approximate reasoning, and symbolic processing. Fuzzy inference rules extend symbolic systems with approximate reasoning capabilities, which are used for integrating and interpreting the outputs of neural networks. The symbolic system captures meta-level information about neural networks and defines its interaction with neural networks through a set of control tasks. Fuzzy action rules provide a robust mechanism for recognizing the situations in which neural networks require certain control actions. The neural nets, on the other hand, offer flexible classification and adaptive learning capabilities, which are crucial for dynamic and noisy environments. By combining neural nets and symbolic systems at their system levels through the use of fuzzy logic, the author's approach alleviates current difficulties in reconciling differences between low-level data processing mechanisms of neural nets and artificial intelligence systems

    Integration of perception and reasoning in fast neural modules

    Get PDF
    Artificial neural systems promise to integrate symbolic and sub-symbolic processing to achieve real time control of physical systems. Two potential alternatives exist. In one, neural nets can be used to front-end expert systems. The expert systems, in turn, are developed with varying degrees of parallelism, including their implementation in neural nets. In the other, rule-based reasoning and sensor data can be integrated within a single hybrid neural system. The hybrid system reacts as a unit to provide decisions (problem solutions) based on the simultaneous evaluation of data and rules. Discussed here is a model hybrid system based on the fuzzy cognitive map (FCM). The operation of the model is illustrated with the control of a hypothetical satellite that intelligently alters its attitude in space in response to an intersecting micrometeorite shower

    A connectionist representation of first-order formulae with dynamic variable binding

    Get PDF
    The relationship between symbolicism and connectionism has been one of the major issues in recent Artificial Intelligence research. An increasing number of researchers from each side have tried to adopt desirable characteristics of the other. These efforts have produced a number of different strategies for interfacing connectionist and sym¬ bolic AI. One of them is connectionist symbol processing which attempts to replicate symbol processing functionalities using connectionist components.In this direction, this thesis develops a connectionist inference architecture which per¬ forms standard symbolic inference on a subclass of first-order predicate calculus. Our primary interest is in understanding how formulas which are described in a limited form of first-order predicate calculus may be implemented using a connectionist archi¬ tecture. Our chosen knowledge representation scheme is a subset of first-order Horn clause expressions which is a set of universally quantified expressions in first-order predicate calculus. As a focus of attention we are developing techniques for compiling first-order Horn clause expressions into a connectionist network. This offers practical benefits but also forces limitations on the scope of the compiled system, since we tire, in fact, merging an interpreter into the connectionist networks. The compilation process has to take into account not only first-order Horn clause expressions themselves but also the strategy which we intend to use for drawing inferences from them. Thus, this thesis explores the extent to which this type of a translation can build a connectionist inference model to accommodate desired symbolic inference.This work first involves constructing efficient connectionist mechanisms to represent basic symbol components, dynamic bindings, basic symbolic inference procedures, and devising a set of algorithms which automatically translates input descriptions to neural networks using the above connectionist mechanisms. These connectionist mechanisms are built by taking an existing temporal synchrony mechanism and extending it further to obtain desirable features to represent and manipulate basic symbol structures. The existing synchrony mechanism represents dynamic bindings very efficiently using tem¬ poral synchronous activity between neuron elements but it has fundamental limitations in supporting standard symbolic inference. The extension addresses these limitations.The ability of the connectionist inference model was tested using various types of first order Horn clause expressions. The results showed that the proposed connectionist in¬ ference model was able to encode significant sets of first order Horn clause expressions and replicated basic symbolic styles of inference in a connectionist manner. The system successfully demonstrated not only forward chaining but also backward chaining over the networks encoding the input expressions. The results, however, also showed that implementing a connectionist mechanism for full unification among groups of unifying arguments in rules, are encoding some types of rules, is difficult to achieve in a con¬ nectionist manner needs additional mechanisms. In addition, some difficult issues such as encoding rules having recursive definitions remained untouched

    Encoding techniques for complex information structures in connectionist systems

    Get PDF
    Two general information encoding techniques called relative position encoding and pattern similarity association are presented. They are claimed to be a convenient basis for the connectionist implementation of complex, short term information processing of the sort needed in common sense reasoning, semantic/pragmatic interpretation of natural language utterances, and other types of high level cognitive processing. The relationships of the techniques to other connectionist information-structuring methods, and also to methods used in computers, are discussed in detail. The rich inter-relationships of these other connectionist and computer methods are also clarified. The particular, simple forms are discussed that the relative position encoding and pattern similarity association techniques take in the author's own connectionist system, called Conposit, in order to clarify some issues and to provide evidence that the techniques are indeed useful in practice

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    The dynamic response of end-clamped monolithic beams and sandwich beams has been measured by loading the beams at mid-span using metal foam projectiles. The AISI 304 stainless-steel sandwich beams comprise two identical face sheets and either prismatic Y-frame or corrugated cores. The resistance to shock loading is quantified by the permanent transverse deflection at mid-span of the beams as a function of projectile momentum. The prismatic cores are aligned either longitudinally along the beam length or transversely. It is found that the sandwich beams with a longitudinal core orientation have a higher shock resistance than the monolithic beams of equal mass. In contrast, the performance of the sandwich beams with a transverse core orientation is very similar to that of the monolithic beams. Three-dimensional finite element (FE) simulations are in good agreement with the measured responses. The FE calculations indicate that strain concentrations in the sandwich beams occur at joints within the cores and between the core and face sheets; the level of maximum strain is similar for the Y-frame and corrugated core beams for a given value of projectile momentum. The experimental and FE results taken together reveal that Y-frame and corrugated core sandwich beams of equal mass have similar dynamic performances in terms of rear-face deflection, degree of core compression and level of strain within the beam

    Radical Artificial Intelligence: A Postmodern Approach

    Get PDF
    corecore