76 research outputs found

    Emerging Approaches to DNA Data Storage: Challenges and Prospects

    Get PDF
    With the total amount of worldwide data skyrocketing, the global data storage demand is predicted to grow to 1.75 × 1014GB by 2025. Traditional storage methods have difficulties keeping pace given that current storage media have a maximum density of 103GB/mm3. As such, data production will far exceed the capacity of currently available storage methods. The costs of maintaining and transferring data, as well as the limited lifespans and significant data losses associated with current technologies also demand advanced solutions for information storage. Nature offers a powerful alternative through the storage of information that defines living organisms in unique orders of four bases (A, T, C, G) located in molecules called deoxyribonucleic acid (DNA). DNA molecules as information carriers have many advantages over traditional storage media. Their high storage density, potentially low maintenance cost, ease of synthesis, and chemical modification make them an ideal alternative for information storage. To this end, rapid progress has been made over the past decade by exploiting user-defined DNA materials to encode information. In this review, we discuss the most recent advances of DNA-based data storage with a major focus on the challenges that remain in this promising field, including the current intrinsic low speed in data writing and reading and the high cost per byte stored. Alternatively, data storage relying on DNA nanostructures (as opposed to DNA sequence) as well as on other combinations of nanomaterials and biomolecules are proposed with promising technological and economic advantages. In summarizing the advances that have been made and underlining the challenges that remain, we provide a roadmap for the ongoing research in this rapidly growing field, which will enable the development of technological solutions to the global demand for superior storage methodologies

    An Automated Dna Strands Detection System Featuring 32-Bit Arm7tdmi Microcontroller And Vga-Cmos Digital Image Sensor.

    Get PDF
    Genetic DNA recognition is a routine experiment for detecting the origin of the species. Electrophoresis is one of the processes for such detection which has been used extensively. Pengecaman genetik DNA ialah eksperimen rutin untuk mengesan asal usul sesuatu spesis. Proses electrophoresis ialah salah satu proses pengecaman yang digunakan secara meluas

    Mechanistic modelling of a recombinase-based two-input temporal logic gate

    Get PDF
    Site-specific recombinases (SSRs) mediate efficient manipulation of DNA sequences in vitro and in vivo. In particular, serine integrases have been identified as highly effective tools for facilitating DNA inversion, enabling the design of genetic switches that are capable of turning the expression of a gene of interest on or off in the presence of a SSR protein. The functional scope of such circuitry can be extended to biological Boolean logic operations by incorporating two or more distinct integrase inputs. To date, mathematical modelling investigations have captured the dynamical properties of integrase logic gate systems in a purely qualitative manner, and thus such models are of limited utility as tools in the design of novel circuitry. Here, the authors develop a detailed mechanistic model of a two-input temporal logic gate circuit that can detect and encode sequences of input events. Their model demonstrates quantitative agreement with time-course data on the dynamics of the temporal logic gate, and is shown to subsequently predict dynamical responses relating to a series of induction separation intervals. The model can also be used to infer functional variations between distinct integrase inputs, and to examine the effect of reversing the roles of each integrase on logic gate output

    An Introduction to Programming for Bioscientists: A Python-based Primer

    Full text link
    Computing has revolutionized the biological sciences over the past several decades, such that virtually all contemporary research in the biosciences utilizes computer programs. The computational advances have come on many fronts, spurred by fundamental developments in hardware, software, and algorithms. These advances have influenced, and even engendered, a phenomenal array of bioscience fields, including molecular evolution and bioinformatics; genome-, proteome-, transcriptome- and metabolome-wide experimental studies; structural genomics; and atomistic simulations of cellular-scale molecular assemblies as large as ribosomes and intact viruses. In short, much of post-genomic biology is increasingly becoming a form of computational biology. The ability to design and write computer programs is among the most indispensable skills that a modern researcher can cultivate. Python has become a popular programming language in the biosciences, largely because (i) its straightforward semantics and clean syntax make it a readily accessible first language; (ii) it is expressive and well-suited to object-oriented programming, as well as other modern paradigms; and (iii) the many available libraries and third-party toolkits extend the functionality of the core language into virtually every biological domain (sequence and structure analyses, phylogenomics, workflow management systems, etc.). This primer offers a basic introduction to coding, via Python, and it includes concrete examples and exercises to illustrate the language's usage and capabilities; the main text culminates with a final project in structural bioinformatics. A suite of Supplemental Chapters is also provided. Starting with basic concepts, such as that of a 'variable', the Chapters methodically advance the reader to the point of writing a graphical user interface to compute the Hamming distance between two DNA sequences.Comment: 65 pages total, including 45 pages text, 3 figures, 4 tables, numerous exercises, and 19 pages of Supporting Information; currently in press at PLOS Computational Biolog

    Auf Boolescher Logik basierende Assays für die Analyse verschiedener Bacillus cereus Toxine

    Get PDF
    Bacillus cereus is a Gram-positive and spore-forming bacterium of the Bacillus cereus group, sharing a closely related phylogenetic similarity with other group members such as Bacillus anthracis and Bacillus thuringiensis. Bacillus cereus is responsible for both gastrointestinal and non-gastrointestinal syndromes. Of the former ones, emesis and diarrhea are caused by either the emetic toxin (cereulide) or different enterotoxins mainly the non-haemolytic enterotoxin (Nhe), haemolysin BL (Hbl) and cytotoxin K (CytK). In addition, other toxins and virulence factors have been reported in the past few years, e.g., haemolysin II (HlyII), Certhrax, vegetative insecticidal proteins (VIPs), immune inhibitor A1 (InhA1) and sphingomyelinase (SMase). Since the relative role of the individual toxins and the other factors in disease is still unknown, there is an urgent demand to detect these potential targets for either diagnostic or food safety purposes. In the first part of the thesis, we present an OR gate based on monoclonal antibodies for the simultaneous detection of multiple toxins in a single tube. To further simplify the operating procedure, the Boolean rule of simplification was used to guide the selection of a marker toxin among the natural toxin profiles. Furthermore, we developed a cellular logic circuit for deciphering the toxin profiles produced by B. cereus, using readout techniques based on pore formation on the cell membrane. This new assay enabled the simultaneous detection of seven biomarkers in pathogenic strains from various sources. Lastly, a cellular logic system capable of combinatorial and sequential logic operations based on bacterial protein-triggered cytotoxicity was constructed. Advanced devices such as a keypad lock, half-adder and several basic Boolean properties were demonstrated on the cells. This represents a first example of a Boolean logic-based system for assaying multiple bacterial toxins. In addition, the results suggest that toxins and other virulence factors of bacteria can be used as toolkits for biocomputing.Bacillus cereus ist ein Gram-positives und Sporen bildendes Bakterium aus der Bacillus cereus Gruppe, welche auch die phylogenetisch nah verwandten Bacillus anthracis und Bacillus thuringiensis beinhaltet. B. cereus ist sowohl für gastrointestinale als auch nicht-gastrointestinale Syndrome verantwortlich. In ersterem Fall werden Erbrechen und Diarrhö entweder durch das emetische Toxin (Cereulid) oder durch verschiedene Enterotoxine, hauptsächlich durch das nicht-hämolytische Enterotoxin (Nhe), das Hämolysin BL (Hbl) und das Cytotoxin K (CytK) verursacht. Des Weiteren wurde in den letzten Jahren auch von anderen Toxinen und Virulenz Faktoren berichtet: Hämolysin II (HlyII), Certhrax, die vegetativ expremierten insektiziden Proteine (VIPs), der Immune inhibitor A1 (InhA1) und die Sphingomyelinase (SMase). Da das Zusammenspiel der einzelnen Toxine und der anderen Faktoren im Krankheitsfall noch viele Rätsel aufweist, gibt es einen dringenden Bedarf diese potentiellen Targets zu detektieren – sowohl für die Diagnostik als auch für die Lebensmittelsicherheit. Im ersten Teil dieser Dissertation wird die mathematische Logikfunktion des ODER-Gatters, basierend auf monoklonalen Antikörpern für die simultane Detektion von verschiedenen Toxinen in einem Teströhrchen benutzt. Um den Arbeitsvorgang weiter zu simplifizieren wurde die Boolesche Regel der Vereinfachung angewandt, um ein Marker Toxin aus dem Spektrum der natürlichen Toxine auszuwählen. Desweitern wurde eine zelluläre Schaltkreislogik entwickelt, um die Toxinprofile von B. cereus zu entschlüsseln. Dafür benutzten wir als Testsignal die Porenbildung auf der Zellmembran. Dieser neuartige Assay ermöglicht in pathogenen Stämmen verschiedenen Ursprungs die simultane Detektion von sieben verschiedenen Biomarkern. Zuletzt wurde ein zellulärer Logikschaltkreis, basierend auf durch bakterielle Proteine induzierte Cytotoxizität konstruiert, der zu kombinatorischen und sequentiellen logischen Verknüpfungen befähigt ist. Auch fortgeschrittene Elemente wie ein Tastaturschloss, Halb-Addierer und verschiedene elementare Booleschen Eigenschaften wurden auf zellulärer Ebene demonstriert. Diese Arbeit repräsentiert ein erstes Beispiel für ein auf Boolescher Logik basierendes System unter Benutzung verschiedener bakterieller Toxine. Die Resultate deuten darauf hin, dass bakterielle Toxine und andere Virulenzfaktoren als Bausteine für Bio-Datenverarbeitung genutzt werden können

    Auf Boolescher Logik basierende Assays für die Analyse verschiedener Bacillus cereus Toxine

    Get PDF
    Bacillus cereus is a Gram-positive and spore-forming bacterium of the Bacillus cereus group, sharing a closely related phylogenetic similarity with other group members such as Bacillus anthracis and Bacillus thuringiensis. Bacillus cereus is responsible for both gastrointestinal and non-gastrointestinal syndromes. Of the former ones, emesis and diarrhea are caused by either the emetic toxin (cereulide) or different enterotoxins mainly the non-haemolytic enterotoxin (Nhe), haemolysin BL (Hbl) and cytotoxin K (CytK). In addition, other toxins and virulence factors have been reported in the past few years, e.g., haemolysin II (HlyII), Certhrax, vegetative insecticidal proteins (VIPs), immune inhibitor A1 (InhA1) and sphingomyelinase (SMase). Since the relative role of the individual toxins and the other factors in disease is still unknown, there is an urgent demand to detect these potential targets for either diagnostic or food safety purposes. In the first part of the thesis, we present an OR gate based on monoclonal antibodies for the simultaneous detection of multiple toxins in a single tube. To further simplify the operating procedure, the Boolean rule of simplification was used to guide the selection of a marker toxin among the natural toxin profiles. Furthermore, we developed a cellular logic circuit for deciphering the toxin profiles produced by B. cereus, using readout techniques based on pore formation on the cell membrane. This new assay enabled the simultaneous detection of seven biomarkers in pathogenic strains from various sources. Lastly, a cellular logic system capable of combinatorial and sequential logic operations based on bacterial protein-triggered cytotoxicity was constructed. Advanced devices such as a keypad lock, half-adder and several basic Boolean properties were demonstrated on the cells. This represents a first example of a Boolean logic-based system for assaying multiple bacterial toxins. In addition, the results suggest that toxins and other virulence factors of bacteria can be used as toolkits for biocomputing.Bacillus cereus ist ein Gram-positives und Sporen bildendes Bakterium aus der Bacillus cereus Gruppe, welche auch die phylogenetisch nah verwandten Bacillus anthracis und Bacillus thuringiensis beinhaltet. B. cereus ist sowohl für gastrointestinale als auch nicht-gastrointestinale Syndrome verantwortlich. In ersterem Fall werden Erbrechen und Diarrhö entweder durch das emetische Toxin (Cereulid) oder durch verschiedene Enterotoxine, hauptsächlich durch das nicht-hämolytische Enterotoxin (Nhe), das Hämolysin BL (Hbl) und das Cytotoxin K (CytK) verursacht. Des Weiteren wurde in den letzten Jahren auch von anderen Toxinen und Virulenz Faktoren berichtet: Hämolysin II (HlyII), Certhrax, die vegetativ expremierten insektiziden Proteine (VIPs), der Immune inhibitor A1 (InhA1) und die Sphingomyelinase (SMase). Da das Zusammenspiel der einzelnen Toxine und der anderen Faktoren im Krankheitsfall noch viele Rätsel aufweist, gibt es einen dringenden Bedarf diese potentiellen Targets zu detektieren – sowohl für die Diagnostik als auch für die Lebensmittelsicherheit. Im ersten Teil dieser Dissertation wird die mathematische Logikfunktion des ODER-Gatters, basierend auf monoklonalen Antikörpern für die simultane Detektion von verschiedenen Toxinen in einem Teströhrchen benutzt. Um den Arbeitsvorgang weiter zu simplifizieren wurde die Boolesche Regel der Vereinfachung angewandt, um ein Marker Toxin aus dem Spektrum der natürlichen Toxine auszuwählen. Desweitern wurde eine zelluläre Schaltkreislogik entwickelt, um die Toxinprofile von B. cereus zu entschlüsseln. Dafür benutzten wir als Testsignal die Porenbildung auf der Zellmembran. Dieser neuartige Assay ermöglicht in pathogenen Stämmen verschiedenen Ursprungs die simultane Detektion von sieben verschiedenen Biomarkern. Zuletzt wurde ein zellulärer Logikschaltkreis, basierend auf durch bakterielle Proteine induzierte Cytotoxizität konstruiert, der zu kombinatorischen und sequentiellen logischen Verknüpfungen befähigt ist. Auch fortgeschrittene Elemente wie ein Tastaturschloss, Halb-Addierer und verschiedene elementare Booleschen Eigenschaften wurden auf zellulärer Ebene demonstriert. Diese Arbeit repräsentiert ein erstes Beispiel für ein auf Boolescher Logik basierendes System unter Benutzung verschiedener bakterieller Toxine. Die Resultate deuten darauf hin, dass bakterielle Toxine und andere Virulenzfaktoren als Bausteine für Bio-Datenverarbeitung genutzt werden können

    On the performance and programming of reversible molecular computers

    Get PDF
    If the 20th century was known for the computational revolution, what will the 21st be known for? Perhaps the recent strides in the nascent fields of molecular programming and biological computation will help bring about the ‘Coming Era of Nanotechnology’ promised in Drexler’s ‘Engines of Creation’. Though there is still far to go, there is much reason for optimism. This thesis examines the underlying principles needed to realise the computational aspects of such ‘engines’ in a performant way. Its main body focusses on the ways in which thermodynamics constrains the operation and design of such systems, and it ends with the proposal of a model of computation appropriate for exploiting these constraints. These thermodynamic constraints are approached from three different directions. The first considers the maximum possible aggregate performance of a system of computers of given volume, V, with a given supply of free energy. From this perspective, reversible computing is imperative in order to circumvent the Landauer limit. A result of Frank is refined and strengthened, showing that the adiabatic regime reversible computer performance is the best possible for any computer—quantum or classical. This therefore shows a universal scaling law governing the performance of compact computers of ~V^(5/6), compared to ~V^(2/3) for conventional computers. For the case of molecular computers, it is shown how to attain this bound. The second direction extends this performance analysis to the case where individual computational particles or sub-units can interact with one another. The third extends it to interactions with shared, non-computational parts of the system. It is found that accommodating these interactions in molecular computers imposes a performance penalty that undermines the earlier scaling result. Nonetheless, scaling superior to that of irreversible computers can be preserved, and appropriate mitigations and considerations are discussed. These analyses are framed in a context of molecular computation, but where possible more general computational systems are considered. The proposed model, the א-calculus, is appropriate for programming reversible molecular computers taking into account these constraints. A variety of examples and mathematical analyses accompany it. Moreover, abstract sketches of potential molecular implementations are provided. Developing these into viable schemes suitable for experimental validation will be a focus of future work

    DNA Chemical Reaction Network Design Synthesis and Compilation

    Get PDF
    The advantages of biomolecular computing include 1) the ability to interface with, monitor, and intelligently protect and maintain the functionality of living systems, 2) the ability to create computational devices with minimal energy needs and hazardous waste production during manufacture and lifecycle, 3) the ability to store large amounts of information for extremely long time periods, and 4) the ability to create computation analogous to human brain function. To realize these advantages over electronics, biomolecular computing is at a watershed moment in its evolution. Computing with entire molecules presents different challenges and requirements than computing just with electric charge. These challenges have led to ad-hoc design and programming methods with high development costs and limited device performance. At the present time, device building entails complete low-level detail immersion. We address these shortcomings by creation of a systems engineering process for building and programming DNA-based computing devices. Contributions of this thesis include numeric abstractions for nucleic acid sequence and secondary structure, and a set of algorithms which employ these abstractions. The abstractions and algorithms have been implemented into three artifacts: DNADL, a design description language; Pyxis, a molecular compiler and design toolset; and KCA, a simulation of DNA kinetics using a cellular automaton discretization. Our methods are applicable to other DNA nanotechnology constructions and may serve in the development of a full DNA computing model

    RNA AS A UNIQUE POLYMER TO BUILD CONTROLLABLE NANOSTRUCTURES FOR NANOMEDICINE AND NANOTECHNOLOGY

    Get PDF
    RNA nanotechnology is an emerging field that involves the design, construction and functionalization of nanostructures composed mainly of RNA for applications in biomedical and material sciences. RNA is a unique polymer with structural simplicity like DNA and functional diversity like proteins. A variety of RNA nanostructures have been reported with different geometrical structures and functionalities. This dissertation describes the design and construction of novel two-dimensional and three-dimensional self-assembled RNA nanostructures with applications in therapeutics delivery, cancer targeting and immunomodulation. Firstly, by using the ultra-stable pRNA three-way junction motif with controllable angles and arm lengths, tetrahedral architectures composed purely of RNA were successfully assembled via one-pot bottom-up assembly with high efficiency and thermal stability. By introducing arm sizes of 22 bp and 55 bp, two RNA tetrahedrons with similar global contour structure but with different sizes of 8 nm and 17 nm were successfully assembled. The RNA tetrahedrons were also highly amenable to functionalization. Fluorogenic RNA aptamers, ribozyme, siRNA, and protein-binding RNA aptamers were integrated into the tetrahedrons by simply fusing the respective sequences with the tetrahedral core modules. Secondly, I reported the design and construction of molecularly defined RNA cages with cube and dodecahedron shapes based on the stable pRNA 3WJ. The RNA cages can be easily self-assembled by single-step annealing. The RNA cages were further characterized by gel electrophoresis, cryo-electron microscopy and atomic force microscopy, confirming the spontaneous formation of the RNA cages. I also demonstrated that the constructed RNA cages could be used to deliver model drugs such as immunomodulatory CpG DNA into cells and elicit enhanced immune responses. Thirdly, by using the modular multi-domain strategy, molecular defined RNA nanowires can be successfully self-assembled via a bottom-up approach. Only four different 44-nucleotide single-stranded RNAs were used to assemble the RNA nanowire. The reported RNA nanowire has the potential to be explored in the future as the carrier for drug delivery or matrix for tissue engineering. Fourthly, the construction of RNA polygons for delivering immunoactive CpG oligonucleotides will be presented. When CpG oligonucleotides were incorporated into the RNA polygons, their immunomodulation effect for cytokine TNF-α and IL-6 induction was greatly enhanced, while RNA polygon controls induced unnoticeable cytokine induction. Moreover, the RNA polygons were delivered to macrophages specifically and the degree of immunostimulation greatly depended on the size, shape, and the number of payload per RNA polygon. Collectively, these findings demonstrated RNA nanotechnology can produce controllable nanostructures with different functionalities and result in potential applications in nanomedicine and nanotechnology
    corecore