299 research outputs found

    Random Access Scheduling without Message Passing: A Collision-based AIMD Approach

    Get PDF
    Department of Computer EngineeringWireless scheduling has been extensively studied in the literature. Since Maximum Weighted Scheduling has been developed and shown to achieve the optimal performance, there have been many efforts to overcome its complexity issue. Random access has attracted much attention due to its potential for low complexity and distributed control, which are desirable for scheduling in multi-hop wireless networks. Although several interesting random access scheduling schemes have been shown to be provably efficient, they suffer in practice from high packet delays or severe performance degradation due to the control overhead to exchange information between neighboring links. In this paper, we develop a novel random access scheduling scheme that does not need message passing. We pay attention to the interplay between the links and control their access probabilities targeting at a certain collision rate. We employ the Additive Increase Multiplicative Decrease (AIMD) algorithm for convergence, and show that our proposed scheme can achieve the same performance bound as the previous random access schemes with high control overhead. We verify our results through simulations and show that our proposed scheme achieves the performance close to that of the centralized greedy algorithm.ope

    X-TCP: A Cross Layer Approach for TCP Uplink Flows in mmWave Networks

    Full text link
    Millimeter wave frequencies will likely be part of the fifth generation of mobile networks and of the 3GPP New Radio (NR) standard. MmWave communication indeed provides a very large bandwidth, thus an increased cell throughput, but how to exploit these resources at the higher layers is still an open research question. A very relevant issue is the high variability of the channel, caused by the blockage from obstacles and the human body. This affects the design of congestion control mechanisms at the transport layer, and state-of-the-art TCP schemes such as TCP CUBIC present suboptimal performance. In this paper, we present a cross layer approach for uplink flows that adjusts the congestion window of TCP at the mobile equipment side using an estimation of the available data rate at the mmWave physical layer, based on the actual resource allocation and on the Signal to Interference plus Noise Ratio. We show that this approach reduces the latency, avoiding to fill the buffers in the cellular stack, and has a quicker recovery time after RTO events than several other TCP congestion control algorithms.Comment: 6 pages, 5 figures, accepted for presentation at the 2017 16th Annual Mediterranean Ad Hoc Networking Workshop (MED-HOC-NET

    Wireless Sensor Network Transport Protocol - A State of the Art

    Get PDF
    In this article, we present a survey of Wireless Sensor Networks (WSNs) existing Transport Protocols. Wehave evaluated the design concepts of different protocols based on congestion control, reliability support and source traffic priority support. Then we draw the concluding remarks, while highlighting up-and-coming research challenges for WSN transport protocols, which should be addressed further in prospective designs

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    Will TCP work in mmWave 5G Cellular Networks?

    Full text link
    The vast available spectrum in the millimeter wave (mmWave) bands offers the possibility of multi-Gbps data rates for fifth generation (5G) cellular networks. However, mmWave capacity can be highly intermittent due to the vulnerability of mmWave signals to blockages and delays in directional searching. Such highly variable links present unique challenges for adaptive control mechanisms in transport layer protocols and end-to-end applications. This paper considers the fundamental question of whether TCP - the most widely used transport protocol - will work in mmWave cellular systems. The paper provides a comprehensive simulation study of TCP considering various factors such as the congestion control algorithm, including the recently proposed TCP BBR, edge vs. remote servers, handover and multi- connectivity, TCP packet size and 3GPP-stack parameters. We show that the performance of TCP on mmWave links is highly dependent on different combinations of these parameters, and identify the open challenges in this area.Comment: 7 pages, 4 figures, 2 tables. To be published in the IEEE Communication Magazin
    • …
    corecore