134 research outputs found

    Collective additive tree spanners for circle graphs and polygonal graphs

    Get PDF
    AbstractA graph G=(V,E) is said to admit a system of μ collective additive tree r-spanners if there is a system T(G) of at most μ spanning trees of G such that for any two vertices u,v of G a spanning tree T∈T(G) exists such that the distance in T between u and v is at most r plus their distance in G. In this paper, we examine the problem of finding “small” systems of collective additive tree r-spanners for small values of r on circle graphs and on polygonal graphs. Among other results, we show that every n-vertex circle graph admits a system of at most 2log32n collective additive tree 2-spanners and every n-vertex k-polygonal graph admits a system of at most 2log32k+7 collective additive tree 2-spanners. Moreover, we show that every n-vertex k-polygonal graph admits an additive (k+6)-spanner with at most 6n−6 edges and every n-vertex 3-polygonal graph admits a system of at most three collective additive tree 2-spanners and an additive tree 6-spanner. All our collective tree spanners as well as all sparse spanners are constructible in polynomial time

    Fast approximation of centrality and distances in hyperbolic graphs

    Full text link
    We show that the eccentricities (and thus the centrality indices) of all vertices of a δ\delta-hyperbolic graph G=(V,E)G=(V,E) can be computed in linear time with an additive one-sided error of at most cδc\delta, i.e., after a linear time preprocessing, for every vertex vv of GG one can compute in O(1)O(1) time an estimate e^(v)\hat{e}(v) of its eccentricity eccG(v)ecc_G(v) such that eccG(v)e^(v)eccG(v)+cδecc_G(v)\leq \hat{e}(v)\leq ecc_G(v)+ c\delta for a small constant cc. We prove that every δ\delta-hyperbolic graph GG has a shortest path tree, constructible in linear time, such that for every vertex vv of GG, eccG(v)eccT(v)eccG(v)+cδecc_G(v)\leq ecc_T(v)\leq ecc_G(v)+ c\delta. These results are based on an interesting monotonicity property of the eccentricity function of hyperbolic graphs: the closer a vertex is to the center of GG, the smaller its eccentricity is. We also show that the distance matrix of GG with an additive one-sided error of at most cδc'\delta can be computed in O(V2log2V)O(|V|^2\log^2|V|) time, where c<cc'< c is a small constant. Recent empirical studies show that many real-world graphs (including Internet application networks, web networks, collaboration networks, social networks, biological networks, and others) have small hyperbolicity. So, we analyze the performance of our algorithms for approximating centrality and distance matrix on a number of real-world networks. Our experimental results show that the obtained estimates are even better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author

    Fast Construction of Nets in Low Dimensional Metrics, and Their Applications

    Full text link
    We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This data-structure is then applied to obtain improved algorithms for the following problems: Approximate nearest neighbor search, well-separated pair decomposition, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near-linear and the space being used is linear.Comment: 41 pages. Extensive clean-up of minor English error

    A New Optimality Measure for Distance Dominating Sets

    Get PDF
      We study the problem of finding the smallest power of an input graph that has k disjoint dominating sets, where the ith power of an input graph G is constructed by adding edges between pairs of vertices in G at distance i or less, and a subset of vertices in a graph G is a dominating set if and only if every vertex in G is adjacent to a vertex in this subset.   The problem is a different view of the d-domatic number problem in which the goal is to find the maximum number of disjoint dominating sets in the dth power of the input graph.   This problem is motivated by applications in multi-facility location and distributed networks. In the facility location framework, for instance, there are k types of services that all clients in different regions of a city should receive. A graph representing the map of regions in the city is given where the nodes of the graph represent regions and neighboring regions are connected by edges. The problem is how to establish facility servers in the city (each region can host at most one server) such that every client in the city can access a facility server in its region or in a region in the neighborhood. Since it may not be possible to find a facility location satisfying this condition, "a region in the neighborhood" required in the question is modified to "a region at the minimum possible distance d".   In this thesis, we study the connection of the above-mentioned problem with similar problems including the domatic number problem and the d-domatic number problem. We show that the problem is NP-complete for any fixed k greater than two even when the input graph is restricted to split graphs, 2-connected graphs, or planar bipartite graphs of degree four. In addition, the problem is in P for bounded tree-width graphs, when considering k as a constant, and for strongly chordal graphs, for any k. Then, we provide a slightly simpler proof for a known upper bound for the problem. We also develop an exact (exponential) algorithm for the problem, running in time O(2. 73n). Moreover, we prove that the problem cannot be approximated within ratio smaller than 2 even for split graphs, 2-connected graphs, and planar bipartite graphs of degree four. We propose a greedy 3-approximation algorithm for the problem in the general case, and other approximation ratios for permutation graphs, distance-hereditary graphs, cocomparability graphs, dually chordal graphs, and chordal graphs. Finally, we list some directions for future work
    corecore