96 research outputs found

    A constructive and unifying framework for zero-bit watermarking

    Get PDF
    In the watermark detection scenario, also known as zero-bit watermarking, a watermark, carrying no hidden message, is inserted in content. The watermark detector checks for the presence of this particular weak signal in content. The article looks at this problem from a classical detection theory point of view, but with side information enabled at the embedding side. This means that the watermark signal is a function of the host content. Our study is twofold. The first step is to design the best embedding function for a given detection function, and the best detection function for a given embedding function. This yields two conditions, which are mixed into one `fundamental' partial differential equation. It appears that many famous watermarking schemes are indeed solution to this `fundamental' equation. This study thus gives birth to a constructive framework unifying solutions, so far perceived as very different.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Structured codebooks for SCS watermarking

    Get PDF
    Digital watermarking aims at embedding information in digital data. The watermark is usually required to be imperceptible, unremovable and to have a high information content. Unfortunately, these three requirements are contradicting. For example, having a more robust watermark makes it either more perceptible or/and less informative. For Gaussian data and additive white Gaussian noise, an optimal but also impractical scheme has already be devised. Since then, many practical schemes have tried to approach the theoretical limits. This paper investigate improvements to current state-of-the-art embedding schemes

    Worst Case Attack on Quantization Based Data Hiding

    Full text link
    Currently, most quantization based data hiding al-gorithms are built assuming specific distributions of at-tacks, such as additive white Gaussian noise (AWGN), uniform noise, and so on. In this paper, we prove that the worst case additive attack for quantization based data hiding is a 3-δ function. We derive the expression for the probability of error (Pe) in terms of distortion compensation factor, α, and the attack distribution. By maximizing Pe with respect to the attack distribution, we get the optimal placement of the 3-δ function. We then experimentally verify that the 3-δ function is in-deed the worst case attack for quantization based data hiding.

    Robust information hiding in low-resolution videos with quantization index modulation in DCT-CS domain

    Get PDF
    Video information hiding and transmission over noisy channels leads to errors on video and degradation of the visual quality notably. In this paper, a video signal fusion scheme is proposed to combine sensed host signal and the hidden signal with quantization index modulation (QIM) technology in the compressive sensing (CS) and discrete cosine transform (DCT) domain. With quantization based signal fusion, a realistic solution is provided to the receiver, which can improve the reconstruction video quality without requiring significant extra channel resource. The extensive experiments have shown that the proposed scheme can effectively achieve the better trade-off between robustness and statistical invisibility for video information hiding communication. This will be extremely important for low-resolution video analytics and protection in big data era

    Watermarking security: theory and practice

    Get PDF
    This article proposes a theory of watermarking security based on a cryptanalysis point of view. The main idea is that information about the secret key leaks from the observations, for instance watermarked pieces of content, available to the opponent. Tools from information theory (Shannon's mutual information and Fisher's information matrix) can measure this leakage of information. The security level is then defined as the number of observations the attacker needs to successfully estimate the secret key. This theory is applied to two common watermarking methods: the substitutive scheme and the spread spectrum based techniques. Their security levels are calculated against three kinds of attack. The experimental work illustrates how Blind Source Separation (especially Independent Component Analysis) algorithms help the opponent exploiting this information leakage to disclose the secret carriers in the spread spectrum case. Simulations assess the security levels derived in the theoretical part of the article

    Quantization Watermarking for Joint Compression and Data Hiding Schemes

    Get PDF
    International audienceEnrichment and protection of JPEG2000 images is an important issue. Data hiding techniques are a good solution to solve these problems. In this context, we can consider the joint approach to introduce data hiding technique into JPEG2000 coding pipeline. Data hiding consists of imperceptibly altering multimedia content, to convey some information. This process is done in such a way that the hidden data is not perceptible to an observer. Digital watermarking is one type of data hiding. In addition to the imperceptibility and payload constraints, the watermark should be robust against a variety of manipulations or attacks. We focus on trellis coded quantization (TCQ) data hiding techniques and propose two JPEG2000 compression and data hiding schemes. The properties of TCQ quantization, defined in JPEG2000 part 2, are used to perform quantization and information embedding during the same time. The first scheme is designed for content description and management applications with the objective of achieving high payloads. The compression rate/imperceptibility/payload trade off is our main concern. The second joint scheme has been developed for robust watermarking and can have consequently many applications. We achieve the better imperceptibility/robustness trade off in the context of JPEG2000 compression. We provide some experimental results on the implementation of these two schemes

    Security of Lattice-Based Data Hiding Against the Watermarked-Only Attack

    Full text link

    An Asymmetric Watermarking Method

    Get PDF
    Special Issue on Signal Processing for Data Hiding in Digital Media and Secure Content DeliveryThis article presents an asymmetric watermarking method as an alternative to classical Direct Sequence Spread Spectrum and Watermarking Costa Schemes techniques. This new method provides a higher security level against malicious attacks threatening watermarking techniques used for a copy protection purpose. This application, which is quite different from the classical copyright enforcement issue, is extremely challenging as no public algorithm is so far known to be secure enough and some proposed proprietary techniques have been already hacked. Our method is thus a try towards the proof that the Kerckhoffs principle can be stated in the copy protection framework

    Watermarking security

    Get PDF
    International audienceThis chapter deals with applications where watermarking is a security primitive included in a larger system protecting the value of multimedia content. In this context, there might exist dishonest users, in the sequel so-called attackers, willing to read/overwrite hidden messages or simply to remove the watermark signal.The goal of this section is to play the role of the attacker. We analyze means to deduce information about the watermarking technique that will later ease the forgery of attacked copies. This chapter first proposes a topology of the threats in Section 6.1, introducing three different concepts: robustness, worst-case attacks, and security. Previous chapter has already discussed watermark robustness. We focus on worst-case attacks in Section 6.2, on the way to measure watermarking security in Section 6.3, and on the classical tools to break a watermarking scheme in Section 6.4. This tour of watermarking security concludes by a summary of what we know and still do not know about it (Section 6.5) and a review of oracle attacks (Section 6.6). Last, Section 6.7 deals with protocol attacks, a notion which underlines the illusion of security that a watermarking primitive might bring when not properly used in some applications

    Watermarking techniques using knowledge of host database

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore