11,794 research outputs found

    Global Bahadur representation for nonparametric censored regression quantiles and its applications

    Get PDF
    This paper is concerned with the nonparametric estimation of regression quantiles where the response variable is randomly censored. Using results on the strong uniform convergence of U-processes, we derive a global Bahadur representation for the weighted local polynomial estimators, which is sufficiently accurate for many further theoretical analyses including inference. We consider two applications in detail: estimation of the average derivative, and estimation of the component functions in additive quantile regression models.

    Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models

    Full text link
    Structured additive regression provides a general framework for complex Gaussian and non-Gaussian regression models, with predictors comprising arbitrary combinations of nonlinear functions and surfaces, spatial effects, varying coefficients, random effects and further regression terms. The large flexibility of structured additive regression makes function selection a challenging and important task, aiming at (1) selecting the relevant covariates, (2) choosing an appropriate and parsimonious representation of the impact of covariates on the predictor and (3) determining the required interactions. We propose a spike-and-slab prior structure for function selection that allows to include or exclude single coefficients as well as blocks of coefficients representing specific model terms. A novel multiplicative parameter expansion is required to obtain good mixing and convergence properties in a Markov chain Monte Carlo simulation approach and is shown to induce desirable shrinkage properties. In simulation studies and with (real) benchmark classification data, we investigate sensitivity to hyperparameter settings and compare performance to competitors. The flexibility and applicability of our approach are demonstrated in an additive piecewise exponential model with time-varying effects for right-censored survival times of intensive care patients with sepsis. Geoadditive and additive mixed logit model applications are discussed in an extensive appendix

    Model checking techniques for regression models in cancer screening

    Get PDF
    There has been much work on developing statistical procedures for associating tumor size with the probability of detecting a metastasis. Recently, Ghosh (2004) developed a unified statistical framework in which equivalences with censored data structures and models for tumor size and metastasis were examined. Based on this framework, we consider model checking techniques for semiparametric regression models in this paper. The procedures are for checking the additive hazards model. Goodness of fit methods are described for assessing functional form of covariates as well as the additive hazards assumption. The finite-sample properties of the methods are assessed using simulation studies

    Geoadditive hazard regression for interval censored survival times

    Get PDF
    The Cox proportional hazards model is the most commonly used method when analyzing the impact of covariates on continuous survival times. In its classical form, the Cox model was introduced in the setting of right-censored observations. However, in practice other sampling schemes are frequently encountered and therefore extensions allowing for interval and left censoring or left truncation are clearly desired. Furthermore, many applications require a more flexible modeling of covariate information than the usual linear predictor. For example, effects of continuous covariates are likely to be of nonlinear form or spatial information is to be included appropriately. Further extensions should allow for time-varying effects of covariates or covariates that are themselves time-varying. Such models relax the assumption of proportional hazards. We propose a regression model for the hazard rate that combines and extends the above-mentioned features on the basis of a unifying Bayesian model formulation. Nonlinear and time-varying effects as well as the baseline hazard rate are modeled by penalized splines. Spatial effects can be included based on either Markov random fields or stationary Gaussian random fields. The model allows for arbitrary combinations of left, right and interval censoring as well as left truncation. Estimation is based on a reparameterisation of the model as a variance components mixed model. The variance parameters corresponding to inverse smoothing parameters can then be estimated based on an approximate marginal likelihood approach. As an application we present an analysis on childhood mortality in Nigeria, where the interval censoring framework also allows to deal with the problem of heaped survival times caused by memory effects. In a simulation study we investigate the effect of ignoring the impact of interval censored observations
    corecore