32,457 research outputs found

    Path computation in multi-layer networks: Complexity and algorithms

    Full text link
    Carrier-grade networks comprise several layers where different protocols coexist. Nowadays, most of these networks have different control planes to manage routing on different layers, leading to a suboptimal use of the network resources and additional operational costs. However, some routers are able to encapsulate, decapsulate and convert protocols and act as a liaison between these layers. A unified control plane would be useful to optimize the use of the network resources and automate the routing configurations. Software-Defined Networking (SDN) based architectures, such as OpenFlow, offer a chance to design such a control plane. One of the most important problems to deal with in this design is the path computation process. Classical path computation algorithms cannot resolve the problem as they do not take into account encapsulations and conversions of protocols. In this paper, we propose algorithms to solve this problem and study several cases: Path computation without bandwidth constraint, under bandwidth constraint and under other Quality of Service constraints. We study the complexity and the scalability of our algorithms and evaluate their performances on real topologies. The results show that they outperform the previous ones proposed in the literature.Comment: IEEE INFOCOM 2016, Apr 2016, San Francisco, United States. To be published in IEEE INFOCOM 2016, \<http://infocom2016.ieee-infocom.org/\&g

    Stochastic Synapses Enable Efficient Brain-Inspired Learning Machines

    Get PDF
    Recent studies have shown that synaptic unreliability is a robust and sufficient mechanism for inducing the stochasticity observed in cortex. Here, we introduce Synaptic Sampling Machines, a class of neural network models that uses synaptic stochasticity as a means to Monte Carlo sampling and unsupervised learning. Similar to the original formulation of Boltzmann machines, these models can be viewed as a stochastic counterpart of Hopfield networks, but where stochasticity is induced by a random mask over the connections. Synaptic stochasticity plays the dual role of an efficient mechanism for sampling, and a regularizer during learning akin to DropConnect. A local synaptic plasticity rule implementing an event-driven form of contrastive divergence enables the learning of generative models in an on-line fashion. Synaptic sampling machines perform equally well using discrete-timed artificial units (as in Hopfield networks) or continuous-timed leaky integrate & fire neurons. The learned representations are remarkably sparse and robust to reductions in bit precision and synapse pruning: removal of more than 75% of the weakest connections followed by cursory re-learning causes a negligible performance loss on benchmark classification tasks. The spiking neuron-based synaptic sampling machines outperform existing spike-based unsupervised learners, while potentially offering substantial advantages in terms of power and complexity, and are thus promising models for on-line learning in brain-inspired hardware
    corecore