502 research outputs found

    Stochastic Gradient Langevin Dynamics Based on Quantized Optimization

    Full text link
    Stochastic learning dynamics based on Langevin or Levy stochastic differential equations (SDEs) in deep neural networks control the variance of noise by varying the size of the mini-batch or directly those of injecting noise. Since the noise variance affects the approximation performance, the design of the additive noise is significant in SDE-based learning and practical implementation. In this paper, we propose an alternative stochastic descent learning equation based on quantized optimization for non-convex objective functions, adopting a stochastic analysis perspective. The proposed method employs a quantized optimization approach that utilizes Langevin SDE dynamics, allowing for controllable noise with an identical distribution without the need for additive noise or adjusting the mini-batch size. Numerical experiments demonstrate the effectiveness of the proposed algorithm on vanilla convolution neural network(CNN) models and the ResNet-50 architecture across various data sets. Furthermore, we provide a simple PyTorch implementation of the proposed algorithm.Comment: preprin

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases

    An Introduction to Neural Data Compression

    Full text link
    Neural compression is the application of neural networks and other machine learning methods to data compression. Recent advances in statistical machine learning have opened up new possibilities for data compression, allowing compression algorithms to be learned end-to-end from data using powerful generative models such as normalizing flows, variational autoencoders, diffusion probabilistic models, and generative adversarial networks. The present article aims to introduce this field of research to a broader machine learning audience by reviewing the necessary background in information theory (e.g., entropy coding, rate-distortion theory) and computer vision (e.g., image quality assessment, perceptual metrics), and providing a curated guide through the essential ideas and methods in the literature thus far

    Sound Event Detection with Binary Neural Networks on Tightly Power-Constrained IoT Devices

    Full text link
    Sound event detection (SED) is a hot topic in consumer and smart city applications. Existing approaches based on Deep Neural Networks are very effective, but highly demanding in terms of memory, power, and throughput when targeting ultra-low power always-on devices. Latency, availability, cost, and privacy requirements are pushing recent IoT systems to process the data on the node, close to the sensor, with a very limited energy supply, and tight constraints on the memory size and processing capabilities precluding to run state-of-the-art DNNs. In this paper, we explore the combination of extreme quantization to a small-footprint binary neural network (BNN) with the highly energy-efficient, RISC-V-based (8+1)-core GAP8 microcontroller. Starting from an existing CNN for SED whose footprint (815 kB) exceeds the 512 kB of memory available on our platform, we retrain the network using binary filters and activations to match these memory constraints. (Fully) binary neural networks come with a natural drop in accuracy of 12-18% on the challenging ImageNet object recognition challenge compared to their equivalent full-precision baselines. This BNN reaches a 77.9% accuracy, just 7% lower than the full-precision version, with 58 kB (7.2 times less) for the weights and 262 kB (2.4 times less) memory in total. With our BNN implementation, we reach a peak throughput of 4.6 GMAC/s and 1.5 GMAC/s over the full network, including preprocessing with Mel bins, which corresponds to an efficiency of 67.1 GMAC/s/W and 31.3 GMAC/s/W, respectively. Compared to the performance of an ARM Cortex-M4 implementation, our system has a 10.3 times faster execution time and a 51.1 times higher energy-efficiency.Comment: 6 pages conferenc

    Towards Efficient In-memory Computing Hardware for Quantized Neural Networks: State-of-the-art, Open Challenges and Perspectives

    Full text link
    The amount of data processed in the cloud, the development of Internet-of-Things (IoT) applications, and growing data privacy concerns force the transition from cloud-based to edge-based processing. Limited energy and computational resources on edge push the transition from traditional von Neumann architectures to In-memory Computing (IMC), especially for machine learning and neural network applications. Network compression techniques are applied to implement a neural network on limited hardware resources. Quantization is one of the most efficient network compression techniques allowing to reduce the memory footprint, latency, and energy consumption. This paper provides a comprehensive review of IMC-based Quantized Neural Networks (QNN) and links software-based quantization approaches to IMC hardware implementation. Moreover, open challenges, QNN design requirements, recommendations, and perspectives along with an IMC-based QNN hardware roadmap are provided
    • …
    corecore