10,786 research outputs found

    Waveguide components for space applications manufactured by additive manufacturing technology

    Get PDF
    This study investigates the use of novel manufacturing technologies for space antenna feed chain systems. A comparison between conventional and advanced manufacturing technologies concerning the radio-frequency (RF) performance was made, in order to derive design rules for the novel manufacturing technology. Waveguide runs as well as feed chain components were redesigned by using these design rules. Therefore, mainly elliptical and circular waveguide sections were used. Different components were combined to save mass and power losses. Additive layer manufacturing (ALM) was chosen to build feed chain components in order to investigate the advantages of ALM compared to conventional technologies. This study concludes with an outlook on future opportunities of advanced manufacturing technologies for RF space applications as well as ongoing development activities

    high performance microwave waveguide devices produced by laser powder bed fusion process

    Get PDF
    Abstract Additive manufacturing technologies are currently envisaged to boost the development of a next generation of microwave devices intended for satellite telecommunications. Due to their excellent electromagnetic and mechanical properties, metal waveguide components are key building blocks of several radio frequency (RF) systems used in these applications. This article reports the perspectives deriving from the use of laser powder bed fusion (L-PBF) technology to the production of high-performance microwave waveguide devices. A robust design of filters has been implemented in several prototypes manufactured in AlSi10Mg alloy. The corresponding measured performance confirm the applicability of the L-PBF process to the intended application

    Electromagnetic analysis and performance comparison of fully 3D-printed antennas

    Get PDF
    In this work, the possibility of directly prototyping antennas by exploiting additive manufacturing 3D-printing technology is investigated. In particular, the availability of printable filaments with interesting conductive properties allows for printing of even the antenna conductive elements. Three samples of a 2.45 GHz microstrip patch antenna have been 3D-printed by using different approaches and materials, and their performance evaluated and compared. In particular, the same dielectric substrate printed in polylactic acid (PLA) has been adopted in all cases, whilst copper tape and two different conductive filaments have been used to realize the conductive parts of the three antenna samples, respectively. Even if an expected radiation efficiency reduction has been observed for the conductive filament case, the comparative analysis clearly demonstrates that 3D-printing technology can be exploited to design working fully-printed antennas, including the conductive parts

    SARAS: a precision system for measurement of the Cosmic Radio Background and signatures from the Epoch of Reionization

    Full text link
    SARAS is a correlation spectrometer purpose designed for precision measurements of the cosmic radio background and faint features in the sky spectrum at long wavelengths that arise from redshifted 21-cm from gas in the reionization epoch. SARAS operates in the octave band 87.5-175 MHz. We present herein the system design arguing for a complex correlation spectrometer concept. The SARAS design concept provides a differential measurement between the antenna temperature and that of an internal reference termination, with measurements in switched system states allowing for cancellation of additive contaminants from a large part of the signal flow path including the digital spectrometer. A switched noise injection scheme provides absolute spectral calibration. Additionally, we argue for an electrically small frequency-independent antenna over an absorber ground. Various critical design features that aid in avoidance of systematics and in providing calibration products for the parametrization of other unavoidable systematics are described and the rationale discussed. The signal flow and processing is analyzed and the response to noise temperatures of the antenna, reference termination and amplifiers is computed. Multi-path propagation arising from internal reflections are considered in the analysis, which includes a harmonic series of internal reflections. We opine that the SARAS design concept is advantageous for precision measurement of the absolute cosmic radio background spectrum; therefore, the design features and analysis methods presented here are expected to serve as a basis for implementations tailored to measurements of a multiplicity of features in the background sky at long wavelengths, which may arise from events in the dark ages and subsequent reionization era.Comment: 49 pages, 17 figure
    corecore