88 research outputs found

    The Value of User-Visible Internet Cryptography

    Full text link
    Cryptographic mechanisms are used in a wide range of applications, including email clients, web browsers, document and asset management systems, where typical users are not cryptography experts. A number of empirical studies have demonstrated that explicit, user-visible cryptographic mechanisms are not widely used by non-expert users, and as a result arguments have been made that cryptographic mechanisms need to be better hidden or embedded in end-user processes and tools. Other mechanisms, such as HTTPS, have cryptography built-in and only become visible to the user when a dialogue appears due to a (potential) problem. This paper surveys deployed and potential technologies in use, examines the social and legal context of broad classes of users, and from there, assesses the value and issues for those users

    Strong Electronic Identification: Survey & Scenario Planning

    Get PDF
    The deployment of more high-risk services such as online banking and government services on the Internet has meant that the need and demand for strong electronic identity is bigger today more than ever. Different stakeholders have different reasons for moving their services to the Internet, including cost savings, being closer to the customer or citizen, increasing volume and value of services among others. This means that traditional online identification schemes based on self-asserted identities are no longer sufficient to cope with the required level of assurance demanded by these services. Therefore, strong electronic identification methods that utilize identifiers rooted in real world identities must be provided to be used by customers and citizens alike on the Internet. This thesis focuses on studying state-of-the-art methods for providing reliable and mass market strong electronic identity in the world today. It looks at concrete real-world examples that enable real world identities to be transferred and used in the virtual world of the Internet. The thesis identifies crucial factors that determine what constitutes a strong electronic identity solution and through these factors evaluates and compares the example solutions surveyed in the thesis. As the Internet become more pervasive in our lives; mobile devices are becoming the primary devices for communication and accessing Internet services. This has thus, raised the question of what sort of strong electronic identity solutions could be implemented and how such solutions could adapt to the future. To help to understand the possible alternate futures, a scenario planning and analysis method was used to develop a series of scenarios from underlying key economic, political, technological and social trends and uncertainties. The resulting three future scenarios indicate how the future of strong electronic identity will shape up with the aim of helping stakeholders contemplate the future and develop policies and strategies to better position themselves for the future

    Strong Electronic Identification: Survey & Scenario Planning

    Get PDF
    The deployment of more high-risk services such as online banking and government services on the Internet has meant that the need and demand for strong electronic identity is bigger today more than ever. Different stakeholders have different reasons for moving their services to the Internet, including cost savings, being closer to the customer or citizen, increasing volume and value of services among others. This means that traditional online identification schemes based on self-asserted identities are no longer sufficient to cope with the required level of assurance demanded by these services. Therefore, strong electronic identification methods that utilize identifiers rooted in real world identities must be provided to be used by customers and citizens alike on the Internet. This thesis focuses on studying state-of-the-art methods for providing reliable and mass market strong electronic identity in the world today. It looks at concrete real-world examples that enable real world identities to be transferred and used in the virtual world of the Internet. The thesis identifies crucial factors that determine what constitutes a strong electronic identity solution and through these factors evaluates and compares the example solutions surveyed in the thesis. As the Internet become more pervasive in our lives; mobile devices are becoming the primary devices for communication and accessing Internet services. This has thus, raised the question of what sort of strong electronic identity solutions could be implemented and how such solutions could adapt to the future. To help to understand the possible alternate futures, a scenario planning and analysis method was used to develop a series of scenarios from underlying key economic, political, technological and social trends and uncertainties. The resulting three future scenarios indicate how the future of strong electronic identity will shape up with the aim of helping stakeholders contemplate the future and develop policies and strategies to better position themselves for the future

    SECURE E-MAIL SYSTEM USING S/MIME AND IB-PKC

    Get PDF
    Although e-mail security solutions have been introduced for more than two decades, most of the e-mail messages are sent nowadays without being secured by any of these techniques. This is due to the complexity of using these secure e-mail systems and protocols. The complexity mainly arises from the difficulty associated with managing certificates and public keys. The main objective of this study was to find a solution that can make secure e-mail systems easier to use while maintaining the same level of security. This paper proposes a secure e-mail system that is based on the S/MIME standard where the public key and signature algorithms have been replaced by their Identity-Based Cryptography analogue algorithms. Using Identity-Based Cryptography has eliminated the need for digital certificates, and provided a solution to the usability problem present in the existing secure e-mail systems. Users can determine the public key of the recipient without having to contact any trusted third party, and can start encrypting or verifying messages as long as they have the public system parameters that can be publicly available. Users need to contact the Private Key Generator (PKG) only once in order to retrieve their private key before being able to decrypt or sign messages

    Implementation of an identity based encryption sub-system for secure e-mail and other applications

    Get PDF
    This thesis describes the requirements for, and design of, a suite of a sub-systems which support the introduction of Identity Based Encryption (IBE) to Intrenet communications. Current methods for securing Internet transmission are overly complex to users and require expensive and complex supporting infrastructure for distributing credentials such as certificates or public keys. Identity Based Encryption holds a promise of simplifying the process without compromising the security. In this thesis I will outline the theory behind the cryptography required , give a background to e-M ail and messaging protocols,the current security methods, the infrastructure used, the issues with these methods, and the break through that recent innovations in Identity Based Encryption hopes to deliver.I will describe an implementation of a sub-system that secures e-Mail and other protocolsin desktop platforms with as little impact on the end user as possible

    Proceedings of the 2nd International Workshop on Security in Mobile Multiagent Systems

    Get PDF
    This report contains the Proceedings of the Second Workshop on Security on Security of Mobile Multiagent Systems (SEMAS2002). The Workshop was held in Montreal, Canada as a satellite event to the 5th International Conference on Autonomous Agents in 2001. The far reaching influence of the Internet has resulted in an increased interest in agent technologies, which are poised to play a key role in the implementation of successful Internet and WWW-based applications in the future. While there is still considerable hype concerning agent technologies, there is also an increasing awareness of the problems involved. In particular, that these applications will not be successful unless security issues can be adequately handled. Although there is a large body of work on cryptographic techniques that provide basic building-blocks to solve specific security problems, relatively little work has been done in investigating security in the multiagent system context. Related problems are secure communication between agents, implementation of trust models/authentication procedures or even reflections of agents on security mechanisms. The introduction of mobile software agents significantly increases the risks involved in Internet and WWW-based applications. For example, if we allow agents to enter our hosts or private networks, we must offer the agents a platform so that they can execute correctly but at the same time ensure that they will not have deleterious effects on our hosts or any other agents / processes in our network. If we send out mobile agents, we should also be able to provide guarantees about specific aspects of their behaviour, i.e., we are not only interested in whether the agents carry out-out their intended task correctly. They must defend themselves against attacks initiated by other agents, and survive in potentially malicious environments. Agent technologies can also be used to support network security. For example in the context of intrusion detection, intelligent guardian agents may be used to analyse the behaviour of agents on a firewall or intelligent monitoring agents can be used to analyse the behaviour of agents migrating through a network. Part of the inspiration for such multi-agent systems comes from primitive animal behaviour, such as that of guardian ants protecting their hill or from biological immune systems

    Implementing Azure Active Directory Integration with an Existing Cloud Service

    Get PDF
    Training Simulator (TraSim) is an online, web-based platform for holding crisis management exercises. It simulates epidemics and other exceptional situations to test the functionality of an organization’s operating instructions in the hour of need. The main objective of this thesis is to further develop the service by delegating its existing authentication and user provisioning mechanisms to a centralized, cloud-based Identity and Access Management (IAM) service. Making use of a centralized access control service is widely known as a Single Sign-On (SSO) implementation which comes with multiple benefits such as increased security, reduced administrative overhead and improved user experience. The objective originates from a customer organization’s request to enable SSO for TraSim. The research mainly focuses on implementing SSO by integrating TraSim with Azure Active Directory (AD) from a wide range of IAM services since it is considered as an industry standard and already utilized by the customer. Anyhow, the complexity of the integration is kept as reduced as possible to retain compatibility with other services besides Azure AD. While the integration is a unique operation with an endless amount of software stacks that a service can build on and multiple IAM services to choose from, this thesis aims to provide a general guideline of how to approach a resembling assignment. Conducting the study required extensive search and evaluation of the available literature about terms such as IAM, client-server communication, SSO, cloud services and AD. The literature review is combined with an introduction to the basic technologies that TraSim is built with to justify the choice of OpenID Connect as the authentication protocol and why it was implemented using the mozilla-django-oidc library. The literature consists of multiple online articles, publications and the official documentation of the utilized technologies. The research uses a constructive approach as it focuses into developing and testing a new feature that is merged into the source code of an already existing piece of software

    Introducing keytagging, a novel technique for the protection of medical image-based tests

    Get PDF
    This paper introduces keytagging, a novel technique to protect medical image-based tests by implementing image authentication, integrity control and location of tampered areas, private captioning with role-based access control, traceability and copyright protection. It relies on the association of tags (binary data strings) to stable, semistable or volatile features of the image, whose access keys (called keytags) depend on both the image and the tag content. Unlike watermarking, this technique can associate information to the most stable features of the image without distortion. Thus, this method preserves the clinical content of the image without the need for assessment, prevents eavesdropping and collusion attacks, and obtains a substantial capacity-robustness tradeoff with simple operations. The evaluation of this technique, involving images of different sizes from various acquisition modalities and image modifications that are typical in the medical context, demonstrates that all the aforementioned security measures can be implemented simultaneously and that the algorithm presents good scalability. In addition to this, keytags can be protected with standard Cryptographic Message Syntax and the keytagging process can be easily combined with JPEG2000 compression since both share the same wavelet transform. This reduces the delays for associating keytags and retrieving the corresponding tags to implement the aforementioned measures to only ¿30 and ¿90. ms respectively. As a result, keytags can be seamlessly integrated within DICOM, reducing delays and bandwidth when the image test is updated and shared in secure architectures where different users cooperate, e.g. physicians who interpret the test, clinicians caring for the patient and researchers
    corecore