50 research outputs found

    A Proof Strategy Language and Proof Script Generation for Isabelle/HOL

    Full text link
    We introduce a language, PSL, designed to capture high level proof strategies in Isabelle/HOL. Given a strategy and a proof obligation, PSL's runtime system generates and combines various tactics to explore a large search space with low memory usage. Upon success, PSL generates an efficient proof script, which bypasses a large part of the proof search. We also present PSL's monadic interpreter to show that the underlying idea of PSL is transferable to other ITPs.Comment: This paper has been submitted to CADE2

    From LCF to Isabelle/HOL

    Get PDF
    Interactive theorem provers have developed dramatically over the past four decades, from primitive beginnings to today's powerful systems. Here, we focus on Isabelle/HOL and its distinctive strengths. They include automatic proof search, borrowing techniques from the world of first order theorem proving, but also the automatic search for counterexamples. They include a highly readable structured language of proofs and a unique interactive development environment for editing live proof documents. Everything rests on the foundation conceived by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to ensure soundness and eliminate the need to store proofs. Compared with the research prototypes of the 1970s, Isabelle is a practical and versatile tool. It is used by system designers, mathematicians and many others

    Extended update plans

    Get PDF
    Formal methods are gaining popularity as a way of increasing the reliability of systems through the use of mathematically based techniques. Their domain is no longer restricted to purely academic environments and examples, as they are slowly moving into industrial settings. The slow rate at which this transition takes place is mainly due to the perceived difficulty of formalising the behaviour of systems. While this is undoubtedly true, it is not the case with all formal methods. Update Plans are a powerful formalism for the description of computer architectures and intermediate to low-level languages. They are a declarative specification language with an underlying imperative machine model. The descriptions using Update Plans are clear, compact, intuitive, unambiguous and simple to read. These characteristics allow for the minimisation of possible errors at early stages of the development process even before a verification takes place. In this thesis an overview of the Update Plans formalism is given and a number of realworld applications is shown. The investigation of the application area focuses on computer architectures for which various specifications already exist. The comparison of Update Plan specifications to other specifications provides a useful insight into the strengths and shortcomings of the formalism. The shortcomings, in particular the lack of synchronisation primitives and modularity, are addressed by the development and evaluation of several syntactic and semantic extensions described in this thesis. The extended formalism is also compared to other specification languages and conclusions are drawn

    Models, Algorithms, and Architectures for Scalable Packet Classification

    Get PDF
    The growth and diversification of the Internet imposes increasing demands on the performance and functionality of network infrastructure. Routers, the devices responsible for the switch-ing and directing of traffic in the Internet, are being called upon to not only handle increased volumes of traffic at higher speeds, but also impose tighter security policies and provide support for a richer set of network services. This dissertation addresses the searching tasks performed by Internet routers in order to forward packets and apply network services to packets belonging to defined traffic flows. As these searching tasks must be performed for each packet traversing the router, the speed and scalability of the solutions to the route lookup and packet classification problems largely determine the realizable performance of the router, and hence the Internet as a whole. Despite the energetic attention of the academic and corporate research communities, there remains a need for search engines that scale to support faster communication links, larger route tables and filter sets and increasingly complex filters. The major contributions of this work include the design and analysis of a scalable hardware implementation of a Longest Prefix Matching (LPM) search engine for route lookup, a survey and taxonomy of packet classification techniques, a thorough analysis of packet classification filter sets, the design and analysis of a suite of performance evaluation tools for packet classification algorithms and devices, and a new packet classification algorithm that scales to support high-speed links and large filter sets classifying on additional packet fields

    Highly Automated Formal Verification of Arithmetic Circuits

    Get PDF
    This dissertation investigates the problems of two distinctive formal verification techniques for verifying large scale multiplier circuits and proposes two approaches to overcome some of these problems. The first technique is equivalence checking based on recurrence relations, while the second one is the symbolic computation technique which is based on the theory of Gröbner bases. This investigation demonstrates that approaches based on symbolic computation have better scalability and more robustness than state-of-the-art equivalence checking techniques for verification of arithmetic circuits. According to this conclusion, the thesis leverages the symbolic computation technique to verify floating-point designs. It proposes a new algebraic equivalence checking, in contrast to classical combinational equivalence checking, the proposed technique is capable of checking the equivalence of two circuits which have different architectures of arithmetic units as well as control logic parts, e.g., floating-point multipliers

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Defining interfaces between hardware and software: Quality and performance

    Get PDF
    One of the most important interfaces in a computer system is the interface between hardware and software. This interface is the contract between the hardware designer and the programmer that defines the functional behaviour of the hardware. This thesis examines two critical aspects of defining the hardware-software interface: quality and performance. The first aspect is creating a high quality specification of the interface as conventionally defined in an instruction set architecture. The majority of this thesis is concerned with creating a specification that covers the full scope of the interface; that is applicable to all current implementations of the architecture; and that can be trusted to accurately describe the behaviour of implementations of the architecture. We describe the development of a formal specification of the two major types of Arm processors: A-class (for mobile devices such as phones and tablets) and M-class (for micro-controllers). These specifications are unparalleled in their scope, applicability and trustworthiness. This thesis identifies and illustrates what we consider the key ingredient in achieving this goal: creating a specification that is used by many different user groups. Supporting many different groups leads to improved quality as each group finds different problems in the specification; and, by providing value to each different group, it helps justify the considerable effort required to create a high quality specification of a major processor architecture. The work described in this thesis led to a step change in Arm's ability to use formal verification techniques to detect errors in their processors; enabled extensive testing of the specification against Arm's official architecture conformance suite; improved the quality of Arm's architecture conformance suite based on measuring the architectural coverage of the tests; supported earlier, faster development of architecture extensions by enabling animation of changes as they are being made; and enabled early detection of problems created from architecture extensions by performing formal validation of the specification against semi-structured natural language specifications. As far as we are aware, no other mainstream processor architecture has this capability. The formal specifications are included in Arm's publicly released architecture reference manuals and the A-class specification is also released in machine-readable form. The second aspect is creating a high performance interface by defining the hardware-software interface of a software-defined radio subsystem using a programming language. That is, an interface that allows software to exploit the potential performance of the underlying hardware. While the hardware-software interface is normally defined in terms of machine code, peripheral control registers and memory maps, we define it using a programming language instead. This higher level interface provides the opportunity for compilers to hide some of the low-level differences between different systems from the programmer: a potentially very efficient way of providing a stable, portable interface without having to add hardware to provide portability between different hardware platforms. We describe the design and implementation of a set of extensions to the C programming language to support programming high performance, energy efficient, software defined radio systems. The language extensions enable the programmer to exploit the pipeline parallelism typically present in digital signal processing applications and to make efficient use of the asymmetric multiprocessor systems designed to support such applications. The extensions consist primarily of annotations that can be checked for consistency and that support annotation inference in order to reduce the number of annotations required. Reducing the number of annotations does not just save programmer effort, it also improves portability by reducing the number of annotations that need to be changed when porting an application from one platform to another. This work formed part of a project that developed a high-performance, energy-efficient, software defined radio capable of implementing the physical layers of the 4G cellphone standard (LTE), 802.11a WiFi and Digital Video Broadcast (DVB) with a power and silicon area budget that was competitive with a conventional custom ASIC solution. The Arm architecture is the largest computer architecture by volume in the world. It behooves us to ensure that the interface it describes is appropriately defined
    corecore