12,806 research outputs found

    A Survey of Volunteered Open Geo-Knowledge Bases in the Semantic Web

    Full text link
    Over the past decade, rapid advances in web technologies, coupled with innovative models of spatial data collection and consumption, have generated a robust growth in geo-referenced information, resulting in spatial information overload. Increasing 'geographic intelligence' in traditional text-based information retrieval has become a prominent approach to respond to this issue and to fulfill users' spatial information needs. Numerous efforts in the Semantic Geospatial Web, Volunteered Geographic Information (VGI), and the Linking Open Data initiative have converged in a constellation of open knowledge bases, freely available online. In this article, we survey these open knowledge bases, focusing on their geospatial dimension. Particular attention is devoted to the crucial issue of the quality of geo-knowledge bases, as well as of crowdsourced data. A new knowledge base, the OpenStreetMap Semantic Network, is outlined as our contribution to this area. Research directions in information integration and Geographic Information Retrieval (GIR) are then reviewed, with a critical discussion of their current limitations and future prospects

    TGVizTab: An ontology visualisation extension for Protégé

    Get PDF
    Ontologies are gaining a lot of interest and many are being developed to provide a variety of knowledge services. There is an increasing need for tools to graphically and in-teractively visualise such modelling structures to enhance their clarification, verification and analysis. Protégé 2000 is one of the most popular ontology modelling tools currently available. This paper introduces TGVizTab; a new Protégé plugin based on TouchGraph technology to graphically visualise Protégé?s ontologies

    Integrating descriptions of knowledge management learning activities into large ontological structures: A case study

    Get PDF
    Ontologies have been recognized as a fundamental infrastructure for advanced approaches to Knowledge Management (KM) automation, and the conceptual foundations for them have been discussed in some previous reports. Nonetheless, such conceptual structures should be properly integrated into existing ontological bases, for the practical purpose of providing the required support for the development of intelligent applications. Such applications should ideally integrate KM concepts into a framework of commonsense knowledge with clear computational semantics. In this paper, such an integration work is illustrated through a concrete case study, using the large OpenCyc knowledge base. Concretely, the main elements of the Holsapple & Joshi KM ontology and some existing work on e-learning ontologies are explicitly linked to OpenCyc definitions, providing a framework for the development of functionalities that use the built-in reasoning services of OpenCyc in KM ctivities. The integration can be used as the point of departure for the engineering of KM-oriented systems that account for a shared understanding of the discipline and rely on public semantics provided by one of the largest open knowledge bases available

    Knowledge-infused and Consistent Complex Event Processing over Real-time and Persistent Streams

    Full text link
    Emerging applications in Internet of Things (IoT) and Cyber-Physical Systems (CPS) present novel challenges to Big Data platforms for performing online analytics. Ubiquitous sensors from IoT deployments are able to generate data streams at high velocity, that include information from a variety of domains, and accumulate to large volumes on disk. Complex Event Processing (CEP) is recognized as an important real-time computing paradigm for analyzing continuous data streams. However, existing work on CEP is largely limited to relational query processing, exposing two distinctive gaps for query specification and execution: (1) infusing the relational query model with higher level knowledge semantics, and (2) seamless query evaluation across temporal spaces that span past, present and future events. These allow accessible analytics over data streams having properties from different disciplines, and help span the velocity (real-time) and volume (persistent) dimensions. In this article, we introduce a Knowledge-infused CEP (X-CEP) framework that provides domain-aware knowledge query constructs along with temporal operators that allow end-to-end queries to span across real-time and persistent streams. We translate this query model to efficient query execution over online and offline data streams, proposing several optimizations to mitigate the overheads introduced by evaluating semantic predicates and in accessing high-volume historic data streams. The proposed X-CEP query model and execution approaches are implemented in our prototype semantic CEP engine, SCEPter. We validate our query model using domain-aware CEP queries from a real-world Smart Power Grid application, and experimentally analyze the benefits of our optimizations for executing these queries, using event streams from a campus-microgrid IoT deployment.Comment: 34 pages, 16 figures, accepted in Future Generation Computer Systems, October 27, 201

    Semantic data mining and linked data for a recommender system in the AEC industry

    Get PDF
    Even though it can provide design teams with valuable performance insights and enhance decision-making, monitored building data is rarely reused in an effective feedback loop from operation to design. Data mining allows users to obtain such insights from the large datasets generated throughout the building life cycle. Furthermore, semantic web technologies allow to formally represent the built environment and retrieve knowledge in response to domain-specific requirements. Both approaches have independently established themselves as powerful aids in decision-making. Combining them can enrich data mining processes with domain knowledge and facilitate knowledge discovery, representation and reuse. In this article, we look into the available data mining techniques and investigate to what extent they can be fused with semantic web technologies to provide recommendations to the end user in performance-oriented design. We demonstrate an initial implementation of a linked data-based system for generation of recommendations

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    A Formal Model of Semantic Web Service Ontology (WSMO) Execution

    Get PDF
    Semantic Web Services have been one of the most significant research areas within the Semantic Web vision, and have been recognized as a promising technology that exhibits huge commercial potential. Current Semantic Web Service research focuses on defining models and languages for the semantic markup of all relevant aspects of services, which are accessible through a Web service interface. The Web Service Modelling Ontology (WSMO) is one of the most significant Semantic Web Service framework proposed to date. To support the standardization and tool support of WSMO, a formal semantics of the language is highly desirable. As there are a few variants of WSMO and it is still under development, the semantics of WSMO needs to be formally defined to facilitate easy reuse and future development. In this paper, we present a formal Object-Z semantics of WSMO. Different aspects of the language have been precisely defined within one unified framework. This model provides a formal unambiguous specification, which can be used to develop tools and facilitate future development

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion
    corecore