2,433 research outputs found

    Spectrum sharing and cognitive radio

    Get PDF

    Characterization of interconnection networks in CMPs using full-system simulation

    Get PDF
    Los computadores más recientes incluyen complejos chips compuestos de varios procesadores y una cantidad significativa de memoria cache. La tendencia actual consiste en conectar varios nodos, cada uno de ellos con un procesador y uno o más niveles de cache privada y/o compartida, utilizando una red de interconexión. La importancia de esta red está aumentando a medida que crece el número de nodos que se integran en un chip, ya que pueden aparecer cuellos de botella en la comunicación que reduzcan las prestaciones. Además, la red contribuye en gran medida al consumo de energía y área del chip. En este proyecto, comparamos el comportamiento de tres topologías: el anillo bidireccional, la malla y el toro. El anillo es una topología mínima con bajo coste en energía pero peor rendimiento debido a la mayor latencia de comunicación entre nodos. Por otro lado, el toro tiene mayor número de enlaces entre nodos y ofrece mejores prestaciones. La malla ha sido incluida como una opción intermedia altamente popular. Analizaremos también dos topologías de anillo adicionales que aprovechan la reducida área y complejidad del mismo: una con mayor ancho de banda y otra con routers de menor número de ciclos. Modelamos cuidadosamente todos los componentes del sistema (procesadores, jerarquía de memoria y red de interconexión) utilizando simulación de sistema completo. Ejecutamos aplicaciones reales en arquitecturas con 16 y 64 nodos, incluyendo tanto cargas paralelas como multiprogramadas (ejecución de varias aplicaciones independientes). Demostramos que la topología de la red afecta en gran medida al rendimiento en sistemas con 64 nodos. Con las topologías de anillo, los tiempos de ejecución son mucho mayores debido al aumento del número de saltos que le cuesta a un mensaje atravesar la red. El toro es la topología que ofrece mejor rendimiento, pero la elección más óptima sería la malla si tenemos en cuenta también energía y área. Por otro lado, para chips con 16 nodos, las diferencias en rendimiento son menores y un anillo con routers de 3 cyclos ofrece un tiempo de ejecución aceptable con el menor coste en área y energía. Nuestra aportación más significativa está relacionada con la distribución del tráfico en la red. Vemos que el tráfico no está distribuido uniformemente y que los nodos con mayores tasas de inyección varían con la aplicación. Hasta donde nosotros sabemos, no hay ningún trabajo de investigación previo que destaque este comportamiento

    Digital neural circuits : from ions to networks

    Get PDF
    PhD ThesisThe biological neural computational mechanism is always fascinating to human beings since it shows several state-of-the-art characteristics: strong fault tolerance, high power efficiency and self-learning capability. These behaviours lead the developing trend of designing the next-generation digital computation platform. Thus investigating and understanding how the neurons talk with each other is the key to replicating these calculation features. In this work I emphasize using tailor-designed digital circuits for exactly implementing bio-realistic neural network behaviours, which can be considered a novel approach to cognitive neural computation. The first advance is that biological real-time computing performances allow the presented circuits to be readily adapted for real-time closed-loop in vitro or in vivo experiments, and the second one is a transistor-based circuit that can be directly translated into an impalpable chip for high-level neurologic disorder rehabilitations. In terms of the methodology, first I focus on designing a heterogeneous or multiple-layer-based architecture for reproducing the finest neuron activities both in voltage-and calcium-dependent ion channels. In particular, a digital optoelectronic neuron is developed as a case study. Second, I focus on designing a network-on-chip architecture for implementing a very large-scale neural network (e.g. more than 100,000) with human cognitive functions (e.g. timing control mechanism). Finally, I present a reliable hybrid bio-silicon closed-loop system for central pattern generator prosthetics, which can be considered as a framework for digital neural circuit-based neuro-prosthesis implications. At the end, I present the general digital neural circuit design principles and the long-term social impacts of the presented work

    High Performance and Power Efficient On-Chip Network Designs through Multiple Injection Ports

    Full text link
    Las redes dentro de un chip se están convirtiendo en el elemento principal de los sistemas multiprocesador. A medida que aumenta la escala de integración, más elementos de cómputo (procesadores) se incluyen en el mismo chip. Estos componentes se interconectan con una red dentro del chip que debe ofrecer latencias de transmisión ultra bajas (orden de nanosegundos) y anchos de banda elevados. El diseño, pues, de una red eficiente dentro del chip juega un papel fundamental. En la presente tesis se analizan diferentes alternativas de diseño de las redes en el chip. En particular, se hace uso de la posibilidad de utilizar diferentes puertos de inyección desde los procesadores con el fin de obtener diferentes mejoras. En primer lugar, las prestaciones aumentan al tener procesadores con distintas alternativas de inyección de tráfico. En segundo lugar, además aumenta la tolerancia a fallos frente a defectos de fabricación (mas importantes conforme avanza la tecnología). Y en tercer lugar, permite una política de apagado de componentes más agresiva que nos permita un ahorro significativo de energía. Hemos evaluado diferentes topologías derivadas del mecanismo de inyección en términos de prestaciones, coste de implementación, y ahorro de consumo. Además, hemos desarrollado simuladores específicos para las distintas técnicas utilizadas. Cada topología diseñada supone una mejora respecto a la anterior, y por supuesto, teniendo en cuenta las topologías existentes. En resumen, nuestro esfuerzo se centra en conseguir un excelente compromiso entre prestaciones, consumo y tolerancia a fallos dentro de una red en chip. Para la primera propuesta (topología NR-Mesh), se alcanzan mejoras en prestaciones de un 7\% y hasta de un 75\% en reducción de consumo de media, comparado con la malla 2D o malla de 2 dimensiones. Para la siguiente propuesta, la malla concentrada paralela (PC-Mesh), el beneficio en prestaciones que se obtiene es de hasta un 20\%, así cómo de un 60\% en reducción deCamacho Villanueva, J. (2012). High Performance and Power Efficient On-Chip Network Designs through Multiple Injection Ports [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18235Palanci

    Head-of-Line Blocking Reduction in Power-Efficient Networks-on-Chip

    Full text link
    Tesis por compendioNowadays, thanks to the continuous improvements in the integration scale, more and more cores are added on the same chip, leading to higher system performance. In order to interconnect all nodes, a network-on-chip (NoC) is used, which is in charge of delivering data between cores. However, increasing the number of cores leads to a significant power consumption increase, leading the NoC to be one of the most expensive components in terms of power. Because of this, during the last years, several mechanisms have been proposed to address the NoC power consumption by means of DVFS (Dynamic Voltage and Frequency Scaling) and power-gating strategies. Nevertheless, improvements achieved by these mechanisms are achieved, to a greater or lesser extent, at the cost of system performance, potentially increasing the risk of saturating the network by forming congested points which, in turn, compromise the rest of the system functionality. One side effect is the creation of the "Head-of-Line blocking" effect where congested packets at the head of queues prevent other non-blocked packets from advancing. To address this issue, in this thesis, on one hand, we propose novel congestion control techniques in order to improve system performance by removing the "Head-of-Line" blocking effect. On the other hand, we propose combined solutions adapted to DVFS in order to achieve improvements in terms of performance and power. In addition to this, we propose a path-aware power-gating-based mechanism, which is capable of detecting the flows sharing buffer resources along data paths and perform to switch them off when not needed. With all these combined solutions we can significantly reduce the power consumption of the NoC when compared with state-of-the-art proposals.Hoy en día, gracias a las mejoras en la escala de integración cada vez se integran más y más núcleos en un mismo chip, mejorando así sus prestaciones. Para interconectar todos los nodos dentro del chip se emplea una red en chip (NoC, Network-on-Chip), la cual es la encargada de intercambiar información entre núcleos. No obstante, aumentar el número de núcleos en el chip también conlleva a su vez un importante incremento en el consumo de la NoC, haciendo que ésta se convierta en una de las partes más caras del chip en términos de consumo. Por ello, en los últimos años se han propuesto diversas técnicas de ahorro de energía orientadas a reducir el consumo de la NoC mediante el uso de DVFS (Dynamic Voltage and Frequency Scaling) o estrategias basadas en "power-gating". Sin embargo, éstas mejoras de consumo normalmente se obtienen a costa de sacrificar, en mayor o menor medida, las prestaciones del sistema, aumentado potencialmente así el riesgo de saturar la red, generando puntos de congestión que, a su vez, comprometen el rendimiento del resto del sistema. Un efecto colateral es el "Head-of-Line blocking", mediante el que paquetes congestionados en la cabeza de la cola impiden que otros paquetes no congestionados avancen. Con el fin de solucionar este problema, en ésta tesis, en primer lugar, proponemos técnicas novedosas de control de congestión para incrementar el rendimiento del sistema mediante la eliminación del "Head-of-Line blocking", mientras que, por otra parte, proponemos soluciones combinadas adaptadas a DVFS con el fin de conseguir mejoras en términos de rendimiento y energía. Además, proponemos una técnica de "power-gating" orientada a rutas de datos, la cual es capaz de detectar flujos de datos compartiendo recursos a lo largo de rutas y apagar dichos recursos de forma dinámica cuando no son necesarios. Con todas éstas soluciones combinadas podemos reducir el consumo de energía de la NoC en comparación con otras técnicas presentes en el estado del arte.Hui en dia, gr\`acies a les millores en l'escala d'integraci\'o, cada vegada s'integren m\'es i m\'es nuclis en un mateix xip, la qual cosa millora les seues prestacions. Per tal d'interconectar tots els nodes dins el xip es fa \'us d'una Xarxa en Xip (NoC; Network-on-Chip), la qual \'es l'encarregada d'intercanviar informaci\'o entre els nuclis. No obstant aix\`o, incrementar el nombre de nuclis en el xip tamb\'e comporta un important augment en el consum de la NoC, la qual cosa fa que aquesta es convertisca en una de les parts m\'es costoses del xip en termes de consum. Per aix\`o, en els \'ultims anys s'han proposat diverses t\`ecniques d'estalvi d'energia orientades a reduir el consum de la NoC mitjançant l'\'us de DVFS (Dynamic Voltage and Frequency Scaling) o estrat\`egies basades en ``power-gating''. Malgrat aix\`o, aquestes millores en les prestacions normalment s'obtenen a costa de sacrificar, en major o menor mesura, les prestacions del sistema i augmenta aix\'i el risc de saturar la xarxa al generar-se punts de congesti\'o, que al mateix temps, comprometen el rendiment de la resta del sistema. Un efecte col-lateral \'es el ``Head-of- Line blocking'', mitjançant el qual, els paquets congestionats al cap de la cua, impedixen que altres paquets no congestionats avancen. A fi de solucionar eixe problema, en aquesta tesi, en primer lloc, proposem noves t\`ecniques de control de congesti\'o amb l'objectiu d'incrementar el rendiment del sistema per mitj\`a de l'eliminaci\'o del ``Head-of- Line blocking'', i d'altra banda, proposem solucions combinades adaptades a DVFS amb la finalitat d'aconseguir millores en termes de rendiment i energia. A m\'es, proposem una t\`ecnica de ``power-gating'' orientada a rutes de dades, la qual \'es capa\c c de detectar fluxos de dades al compartir recursos al llarg de les rutes i apagar eixos recursos de forma din\`amica quan no s\'on necessaris. Amb totes aquestes solucions combinades podem reduir el consum d'energia de la NoC en comparaci\'o amb altres t\`ecniques presents en l'estat de l'art.Escamilla López, JV. (2017). Head-of-Line Blocking Reduction in Power-Efficient Networks-on-Chip [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90419TESISCompendi
    corecore